BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 11397396)

  • 1. The metabolism of beta-chloroprene: preliminary in-vitro studies using liver microsomes.
    Himmelstein MW; Carpenter SC; Hinderliter PM; Snow TA; Valentine R
    Chem Biol Interact; 2001 Jun; 135-136():267-84. PubMed ID: 11397396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic modeling of beta-chloroprene metabolism: I. In vitro rates in liver and lung tissue fractions from mice, rats, hamsters, and humans.
    Himmelstein MW; Carpenter SC; Hinderliter PM
    Toxicol Sci; 2004 May; 79(1):18-27. PubMed ID: 14976339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The metabolism and molecular toxicology of chloroprene.
    Munter T; Cottrell L; Ghai R; Golding BT; Watson WP
    Chem Biol Interact; 2007 Mar; 166(1-3):323-31. PubMed ID: 16870169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detoxication pathways involving glutathione and epoxide hydrolase in the in vitro metabolism of chloroprene.
    Munter T; Cottrell L; Golding BT; Watson WP
    Chem Res Toxicol; 2003 Oct; 16(10):1287-97. PubMed ID: 14565770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro genotoxicity testing of (1-chloroethenyl)oxirane, a metabolite of beta-chloroprene.
    Himmelstein MW; Gladnick NL; Donner EM; Snyder RD; Valentine R
    Chem Biol Interact; 2001 Jun; 135-136():703-13. PubMed ID: 11397425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyses of (1-chloroethenyl)oxirane headspace and hemoglobin N-valine adducts in erythrocytes indicate selective detoxification of (1-chloroethenyl)oxirane enantiomers.
    Hurst HE; Ali MY
    Chem Biol Interact; 2007 Mar; 166(1-3):332-40. PubMed ID: 16750522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species differences in the hydrolysis of 2-cyanoethylene oxide, the epoxide metabolite of acrylonitrile.
    Kedderis GL; Batra R
    Carcinogenesis; 1993 Apr; 14(4):685-9. PubMed ID: 8472333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic modeling of beta-chloroprene metabolism: II. The application of physiologically based modeling for cancer dose response analysis.
    Himmelstein MW; Carpenter SC; Evans MV; Hinderliter PM; Kenyon EM
    Toxicol Sci; 2004 May; 79(1):28-37. PubMed ID: 14976335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro metabolism of chloroprene: species differences, epoxide stereochemistry and a de-chlorination pathway.
    Cottrell L; Golding BT; Munter T; Watson WP
    Chem Res Toxicol; 2001 Nov; 14(11):1552-62. PubMed ID: 11712914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Species comparison of acrylonitrile epoxidation by microsomes from mice, rats and humans: relationship to epoxide concentrations in mouse and rat blood.
    Roberts AE; Kedderis GL; Turner MJ; Rickert DE; Swenberg JA
    Carcinogenesis; 1991 Mar; 12(3):401-4. PubMed ID: 2009586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conjugation of acrylonitrile and 2-cyanoethylene oxide with hepatic glutathione.
    Kedderis GL; Batra R; Turner MJ
    Toxicol Appl Pharmacol; 1995 Nov; 135(1):9-17. PubMed ID: 7482544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the biotransformation of 1,3-butadiene and its metabolite, butadiene monoepoxide, by hepatic and pulmonary tissues from humans, rats and mice.
    Csanády GA; Guengerich FP; Bond JA
    Carcinogenesis; 1992 Jul; 13(7):1143-53. PubMed ID: 1638680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using available
    Campbell JL; Clewell HJ; Van Landingham C; Gentry PR; Andersen ME
    Front Pharmacol; 2023; 14():1223808. PubMed ID: 37663267
    [No Abstract]   [Full Text] [Related]  

  • 15. Toxicology of 1,3-butadiene, chloroprene, and isoprene.
    Hurst HE
    Rev Environ Contam Toxicol; 2007; 189():131-79. PubMed ID: 17193739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NTP technical report on the toxicity and metabolism studies of chloral hydrate (CAS No. 302-17-0). Administered by gavage to F344/N rats and B6C3F1 mice.
    Beland FA
    Toxic Rep Ser; 1999 Aug; (59):1-66, A1-E7. PubMed ID: 11803702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic detoxification determines species differences in coumarin-induced hepatotoxicity.
    Vassallo JD; Hicks SM; Daston GP; Lehman-McKeeman LD
    Toxicol Sci; 2004 Aug; 80(2):249-57. PubMed ID: 15141102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of ethylene and ethylene oxide in subcellular fractions of lungs and livers of male B6C3F1 mice and male fischer 344 rats and of human livers.
    Li Q; Csanády GA; Kessler W; Klein D; Pankratz H; Pütz C; Richter N; Filser JG
    Toxicol Sci; 2011 Oct; 123(2):384-98. PubMed ID: 21785163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Species differences in urinary butadiene metabolites; identification of 1,2-dihydroxy-4-(N-acetylcysteinyl)butane, a novel metabolite of butadiene.
    Sabourin PJ; Burka LT; Bechtold WE; Dahl AR; Hoover MD; Chang IY; Henderson RF
    Carcinogenesis; 1992 Sep; 13(9):1633-8. PubMed ID: 1394848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of rat liver microsomal epoxide hydrolase by thiazole and pyrazine: hydrolysis of 2-cyanoethylene oxide.
    Kim SG; Kedderis GL; Batra R; Novak RF
    Carcinogenesis; 1993 Aug; 14(8):1665-70. PubMed ID: 7689039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.