These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11397443)

  • 1. Antifungal polysulphides from Petiveria alliacea L.
    Benevides PJ; Young MC; Giesbrecht AM; Roque NF; Bolzani VS
    Phytochemistry; 2001 Jul; 57(5):743-7. PubMed ID: 11397443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifungal amides from Piper hispidum and Piper tuberculatum.
    Navickiene HM; Alécio AC; Kato MJ; Bolzani VD; Young MC; Cavalheiro AJ; Furlan M
    Phytochemistry; 2000 Nov; 55(6):621-6. PubMed ID: 11130674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical review of the therapeutic potential of dibenzyl trisulphide isolated from Petiveria alliacea L (guinea hen weed, anamu).
    Williams LA; Rosner H; Levy HG; Barton EN
    West Indian Med J; 2007 Jan; 56(1):17-21. PubMed ID: 17621839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L.
    Kim S; Kubec R; Musah RA
    J Ethnopharmacol; 2006 Mar; 104(1-2):188-92. PubMed ID: 16229980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new minor dimmeric ester from seeds of Cassia fistula L. (Leguminosae).
    Sartorelli P; Lago JH; Cunha RL; Kitamura RO; Young MC
    Nat Prod Res; 2012; 26(1):36-41. PubMed ID: 21756186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sulfonic anhydride derivative from dibenzyl trisulphide with agro-chemical activities.
    Williams LA; Vasquez E; Klaiber I; Kraus W; Rosner H
    Chemosphere; 2003 Jun; 51(8):701-6. PubMed ID: 12668029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New sulphide derivative from Ferula rutabensis.
    Abdel-Sattar E; El-Mekkawy S
    Nat Prod Res; 2009; 23(9):861-5. PubMed ID: 19488925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trianthenol: an antifungal tetraterpenoid from Trianthema portulacastrum (Aizoaceae).
    Nawaz HR; Malik A; Ali MS
    Phytochemistry; 2001 Jan; 56(1):99-102. PubMed ID: 11198825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethnobotany, phytochemistry and neuropharmacological effects of Petiveria alliacea L. (Phytolaccaceae): A review.
    Luz DA; Pinheiro AM; Silva ML; Monteiro MC; Prediger RD; Ferraz Maia CS; Fontes-Júnior EA
    J Ethnopharmacol; 2016 Jun; 185():182-201. PubMed ID: 26944236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of antifungal and DNA-damaging activities of alkaloids from branches of Porcelia macrocarpa.
    Lago JH; Chaves MH; Ayres MC; Agripino DG; Young MC
    Planta Med; 2007 Mar; 73(3):292-5. PubMed ID: 17354171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The lachrymatory principle of Petiveria alliacea.
    Kubec R; Kim S; Musah RA
    Phytochemistry; 2003 May; 63(1):37-40. PubMed ID: 12657295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro erythrocytic membrane effects of dibenzyl trisulfide, a secondary metabolite of Petiveria alliacea.
    Pepple DJ; Richards AA; Lowe DA; Reid WA; Younger NO; Williams LA
    Fitoterapia; 2010 Dec; 81(8):1113-6. PubMed ID: 20627119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Petiveria alliacea standardized fraction induces breast adenocarcinoma cell death by modulating glycolytic metabolism.
    Hernández JF; Urueña CP; Cifuentes MC; Sandoval TA; Pombo LM; Castañeda D; Asea A; Fiorentino S
    J Ethnopharmacol; 2014 May; 153(3):641-9. PubMed ID: 24637191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal amide from leaves of Piper hispidum.
    Alécio AC; da Silva Bolzani V; Young MC; Kato MJ; Furlan M
    J Nat Prod; 1998 May; 61(5):637-9. PubMed ID: 9599264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significant inhibitory impact of dibenzyl trisulfide and extracts of Petiveria alliacea on the activities of major drug-metabolizing enzymes in vitro: An assessment of the potential for medicinal plant-drug interactions.
    Murray J; Picking D; Lamm A; McKenzie J; Hartley S; Watson C; Williams L; Lowe H; Delgoda R
    Fitoterapia; 2016 Jun; 111():138-46. PubMed ID: 27105957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifungal amides from Piper scutifolium and Piper hoffmanseggianum.
    Marques JV; Kitamura RO; Lago JH; Young MC; Guimarães EF; Kato MJ
    J Nat Prod; 2007 Dec; 70(12):2036-9. PubMed ID: 18031016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three new phenolic compounds from a manipulated plant cell culture, Mirabilis jalapa.
    Yang SW; Ubillas R; McAlpine J; Stafford A; Ecker DM; Talbot MK; Rogers B
    J Nat Prod; 2001 Mar; 64(3):313-7. PubMed ID: 11277746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifungal nitro compounds from skunk cabbage (Lysichitum americanum) leaves treated with cupric chloride.
    Hanawa F; Tahara S; Towers GH
    Phytochemistry; 2000 Jan; 53(1):55-8. PubMed ID: 10656408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benzoic acid derivatives from Piper species and their fungitoxic activity against Cladosporium cladosporioides and C. sphaerospermum.
    Lago JH; Ramos CS; Casanova DC; Morandim Ade A; Bergamo DC; Cavalheiro AJ; Bolzani Vda S; Furlan M; Guimarães EF; Young MC; Kato MJ
    J Nat Prod; 2004 Nov; 67(11):1783-8. PubMed ID: 15568762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifungal flavanones and prenylated hydroquinones from Piper crassinervium Kunth.
    Danelutte AP; Lago JH; Young MC; Kato MJ
    Phytochemistry; 2003 Sep; 64(2):555-9. PubMed ID: 12943774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.