BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11397569)

  • 1. DC calcium lactate, a new filler-binder for direct compaction of tablets.
    Bolhuis GK; Eissens AC; Zoestbergen E
    Int J Pharm; 2001 Jun; 221(1-2):77-86. PubMed ID: 11397569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyols as filler-binders for disintegrating tablets prepared by direct compaction.
    Bolhuis GK; Rexwinkel EG; Zuurman K
    Drug Dev Ind Pharm; 2009 Jun; 35(6):671-7. PubMed ID: 19274511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compaction properties of isomalt.
    Bolhuis GK; Engelhart JJ; Eissens AC
    Eur J Pharm Biopharm; 2009 Aug; 72(3):621-5. PubMed ID: 19327398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Immediate Release Tablets Containing Calcium Lactate Synthetized from Black Sea Mussel Shells.
    Mititelu M; Moroșan E; Nicoară AC; Secăreanu AA; Musuc AM; Atkinson I; Pandele Cusu J; Nițulescu GM; Ozon EA; Sarbu I; Balaci TD
    Mar Drugs; 2022 Jan; 20(1):. PubMed ID: 35049900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inulin as filler-binder for tablets prepared by direct compaction.
    Eissens AC; Bolhuis GK; Hinrichs WL; Frijlink HW
    Eur J Pharm Sci; 2002 Feb; 15(1):31-8. PubMed ID: 11803129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of dehydration and hydration behavior of calcium lactate pentahydrate and its anhydrate.
    Sakata Y; Shiraishi S; Otsuka M
    Colloids Surf B Biointerfaces; 2005 Dec; 46(3):135-41. PubMed ID: 16293401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pulverization and dehydration on the pharmaceutical properties of calcium lactate pentahydrate tablets.
    Sakata Y; Shiraishi S; Takayama K; Otsuka M
    Colloids Surf B Biointerfaces; 2006 Aug; 51(2):149-56. PubMed ID: 16905296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of two dextrose-based directly compressible excipients.
    Olmo IG; Ghaly ES
    Drug Dev Ind Pharm; 1998 Aug; 24(8):771-8. PubMed ID: 9876525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A methodological evaluation and predictive in silico investigation into the multi-functionality of arginine in directly compressed tablets.
    ElShaer A; Kaialy W; Akhtar N; Iyire A; Hussain T; Alany R; Mohammed AR
    Eur J Pharm Biopharm; 2015 Oct; 96():272-81. PubMed ID: 26255158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Gum of Moringa oleifera as a Binder and Release Retardant in Tablet Formulation.
    Panda DS; Choudhury NS; Yedukondalu M; Si S; Gupta R
    Indian J Pharm Sci; 2008 Sep; 70(5):614-8. PubMed ID: 21394258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural antidiabetic compound for the therapeutic management of diabetes mellitus and its drug delivery system.
    Emeje M; Boyi S; Obidike I; Isimi C; Kunle O; Ofoefule S
    J Diet Suppl; 2011 Sep; 8(3):266-79. PubMed ID: 22432726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-Processed Excipients for Dispersible Tablets-Part 1: Manufacturability.
    Bowles BJ; Dziemidowicz K; Lopez FL; Orlu M; Tuleu C; Edwards AJ; Ernest TB
    AAPS PharmSciTech; 2018 Aug; 19(6):2598-2609. PubMed ID: 29916193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of microcrystalline cellulose on liquid penetration in and disintegration of directly compressed tablets.
    Lerk CF; Bolhuis GK; de Boer AH
    J Pharm Sci; 1979 Feb; 68(2):205-11. PubMed ID: 423092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and evaluation of the performance of different calcium and magnesium salts as excipients for direct compression.
    Mura P; Valleri M; Baldanzi S; Mennini N
    Int J Pharm; 2019 Aug; 567():118454. PubMed ID: 31233848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roller compaction of different pseudopolymorphic forms of theophylline: Effect on compressibility and tablet properties.
    Hadzović E; Betz G; Hadzidedić S; El-Arini SK; Leuenberger H
    Int J Pharm; 2010 Aug; 396(1-2):53-62. PubMed ID: 20600735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of drug release from aged prolonged polyethylene oxide tablet matrices: effect of excipient and drug type.
    Shojaee S; Kaialy W; Cumming KI; Nokhodchi A
    Pharm Dev Technol; 2016 Mar; 21(2):189-95. PubMed ID: 25410967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation into the erosion behaviour of a high drug-load (85%) particulate system designed for an extended-release matrix tablet. Analysis of erosion kinetics in conjunction with variations in lubrication, porosity and compaction rate.
    Dürig T; Venkatesh GM; Fassihi R
    J Pharm Pharmacol; 1999 Oct; 51(10):1085-92. PubMed ID: 10579678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excipients for direct compaction--an update.
    Bolhuis GK; Armstrong NA
    Pharm Dev Technol; 2006 Feb; 11(1):111-24. PubMed ID: 16544915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical stability and solubility of the thermotropic mesophase of fenoprofen calcium as pure drug and in a tablet formulation.
    Patterson J; Bary A; Rades T
    Int J Pharm; 2002 Oct; 247(1-2):147-57. PubMed ID: 12429493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Powder X-ray diffraction can differentiate between enantiomeric variants of calcium lactate pentahydrate crystal in cheese.
    Tansman GF; Kindstedt PS; Hughes JM
    J Dairy Sci; 2014 Dec; 97(12):7354-62. PubMed ID: 25459903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.