These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 11397719)
1. Lipolysis of LDL by human secretory phospholipase A(2) induces particle fusion and enhances the retention of LDL to human aortic proteoglycans. Hakala JK; Oörni K; Pentikäinen MO; Hurt-Camejo E; Kovanen PT Arterioscler Thromb Vasc Biol; 2001 Jun; 21(6):1053-8. PubMed ID: 11397719 [TBL] [Abstract][Full Text] [Related]
2. Sphingomyelinase induces aggregation and fusion, but phospholipase A2 only aggregation, of low density lipoprotein (LDL) particles. Two distinct mechanisms leading to increased binding strength of LDL to human aortic proteoglycans. Oörni K; Hakala JK; Annila A; Ala-Korpela M; Kovanen PT J Biol Chem; 1998 Oct; 273(44):29127-34. PubMed ID: 9786921 [TBL] [Abstract][Full Text] [Related]
3. Lipolytic modification of LDL by phospholipase A2 induces particle aggregation in the absence and fusion in the presence of heparin. Hakala JK; Oörni K; Ala-Korpela M; Kovanen PT Arterioscler Thromb Vasc Biol; 1999 May; 19(5):1276-83. PubMed ID: 10323780 [TBL] [Abstract][Full Text] [Related]
4. Decrease in pH strongly enhances binding of native, proteolyzed, lipolyzed, and oxidized low density lipoprotein particles to human aortic proteoglycans. Sneck M; Kovanen PT; Oörni K J Biol Chem; 2005 Nov; 280(45):37449-54. PubMed ID: 16147996 [TBL] [Abstract][Full Text] [Related]
5. Sphingomyelinase induces aggregation and fusion of small very low-density lipoprotein and intermediate-density lipoprotein particles and increases their retention to human arterial proteoglycans. Oörni K; Posio P; Ala-Korpela M; Jauhiainen M; Kovanen PT Arterioscler Thromb Vasc Biol; 2005 Aug; 25(8):1678-83. PubMed ID: 15879301 [TBL] [Abstract][Full Text] [Related]
6. Proteolysis sensitizes LDL particles to phospholipolysis by secretory phospholipase A2 group V and secretory sphingomyelinase. Plihtari R; Hurt-Camejo E; Oörni K; Kovanen PT J Lipid Res; 2010 Jul; 51(7):1801-9. PubMed ID: 20124257 [TBL] [Abstract][Full Text] [Related]
7. Molecular basis for the association of group IIA phospholipase A(2) and decorin in human atherosclerotic lesions. Sartipy P; Johansen B; Gâsvik K; Hurt-Camejo E Circ Res; 2000 Mar; 86(6):707-14. PubMed ID: 10747008 [TBL] [Abstract][Full Text] [Related]
8. Proteolysis and fusion of low density lipoprotein particles strengthen their binding to human aortic proteoglycans. Paananen K; Saarinen J; Annila A; Kovanen PT J Biol Chem; 1995 May; 270(20):12257-62. PubMed ID: 7744877 [TBL] [Abstract][Full Text] [Related]
9. Binding of human phospholipase A2 type II to proteoglycans. Differential effect of glycosaminoglycans on enzyme activity. Sartipy P; Johansen B; Camejo G; Rosengren B; Bondjers G; Hurt-Camejo E J Biol Chem; 1996 Oct; 271(42):26307-14. PubMed ID: 8824283 [TBL] [Abstract][Full Text] [Related]
10. Phospholipase A2 type II binds to extracellular matrix biglycan: modulation of its activity on LDL by colocalization in glycosaminoglycan matrixes. Sartipy P; Bondjers G; Hurt-Camejo E Arterioscler Thromb Vasc Biol; 1998 Dec; 18(12):1934-41. PubMed ID: 9848887 [TBL] [Abstract][Full Text] [Related]
11. Phospholipase A(2)-modified LDL particles retain the generated hydrolytic products and are more atherogenic at acidic pH. Lähdesmäki K; Plihtari R; Soininen P; Hurt-Camejo E; Ala-Korpela M; Oörni K; Kovanen PT Atherosclerosis; 2009 Dec; 207(2):352-9. PubMed ID: 19473659 [TBL] [Abstract][Full Text] [Related]
12. Acidity and lipolysis by group V secreted phospholipase A(2) strongly increase the binding of apoB-100-containing lipoproteins to human aortic proteoglycans. Lähdesmäki K; Öörni K; Alanne-Kinnunen M; Jauhiainen M; Hurt-Camejo E; Kovanen PT Biochim Biophys Acta; 2012 Feb; 1821(2):257-67. PubMed ID: 22041135 [TBL] [Abstract][Full Text] [Related]
13. Molecular mechanism for changes in proteoglycan binding on compositional changes of the core and the surface of low-density lipoprotein-containing human apolipoprotein B100. Flood C; Gustafsson M; Pitas RE; Arnaboldi L; Walzem RL; Borén J Arterioscler Thromb Vasc Biol; 2004 Mar; 24(3):564-70. PubMed ID: 14726411 [TBL] [Abstract][Full Text] [Related]
14. Phospholipase A(2) modification of low density lipoproteins forms small high density particles with increased affinity for proteoglycans and glycosaminoglycans. Sartipy P; Camejo G; Svensson L; Hurt-Camejo E J Biol Chem; 1999 Sep; 274(36):25913-20. PubMed ID: 10464335 [TBL] [Abstract][Full Text] [Related]
15. Aggregation, fusion, and vesicle formation of modified low density lipoprotein particles: molecular mechanisms and effects on matrix interactions. Oörni K; Pentikäinen MO; Ala-Korpela M; Kovanen PT J Lipid Res; 2000 Nov; 41(11):1703-14. PubMed ID: 11060340 [TBL] [Abstract][Full Text] [Related]
16. Mildly oxidized LDL induces expression of group IIa secretory phospholipase A(2) in human monocyte-derived macrophages. Anthonsen MW; Stengel D; Hourton D; Ninio E; Johansen B Arterioscler Thromb Vasc Biol; 2000 May; 20(5):1276-82. PubMed ID: 10807743 [TBL] [Abstract][Full Text] [Related]
18. Cysteine protease cathepsin F is expressed in human atherosclerotic lesions, is secreted by cultured macrophages, and modifies low density lipoprotein particles in vitro. Oörni K; Sneck M; Brömme D; Pentikäinen MO; Lindstedt KA; Mäyränpää M; Aitio H; Kovanen PT J Biol Chem; 2004 Aug; 279(33):34776-84. PubMed ID: 15184381 [TBL] [Abstract][Full Text] [Related]
19. Proteolysis and fusion of low density lipoprotein particles independently strengthen their binding to exocytosed mast cell granules. Paananen K; Kovanen PT J Biol Chem; 1994 Jan; 269(3):2023-31. PubMed ID: 8294453 [TBL] [Abstract][Full Text] [Related]