These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 11397941)

  • 21. Nitrogen-doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties.
    Chang MT; Chou LJ; Chueh YL; Lee YC; Hsieh CH; Chen CD; Lan YW; Chen LJ
    Small; 2007 Apr; 3(4):658-64. PubMed ID: 17315263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-density, aligned SiO2 nanowire arrays: microscopic imaging of the unique growth style and their ultraviolet light emission properties.
    Xiao Z; Zhang L; Meng G; Tian X; Zeng H; Fang M
    J Phys Chem B; 2006 Aug; 110(32):15724-8. PubMed ID: 16898717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sol-gel template synthesis and photoluminescence of n- and p-type semiconductor oxide nanowires.
    Cao H; Qiu X; Liang Y; Zhang L; Zhao M; Zhu Q
    Chemphyschem; 2006 Feb; 7(2):497-501. PubMed ID: 16363017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The controlled growth of single metallic and conducting polymer nanowires via gate-assisted electrochemical deposition.
    Hu Y; To AC; Yun M
    Nanotechnology; 2009 Jul; 20(28):285605. PubMed ID: 19550021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical trapping and integration of semiconductor nanowire assemblies in water.
    Pauzauskie PJ; Radenovic A; Trepagnier E; Shroff H; Yang P; Liphardt J
    Nat Mater; 2006 Feb; 5(2):97-101. PubMed ID: 16429143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires.
    Wen X; Wang S; Ding Y; Wang ZL; Yang S
    J Phys Chem B; 2005 Jan; 109(1):215-20. PubMed ID: 16851007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Near-ultraviolet zinc oxide nanowire sensor using low temperature hydrothermal growth.
    Swanwick ME; Pfaendler SM; Akinwande AI; Flewitt AJ
    Nanotechnology; 2012 Aug; 23(34):344009. PubMed ID: 22885284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-linear optical properties of zinc oxide nanowires.
    Tang CF; Deng H; Tang B; Cheng H; Wang JC; Chen JJ
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1150-4. PubMed ID: 18468114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature.
    Mayer B; Rudolph D; Schnell J; Morkötter S; Winnerl J; Treu J; Müller K; Bracher G; Abstreiter G; Koblmüller G; Finley JJ
    Nat Commun; 2013; 4():2931. PubMed ID: 24304714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Raman scattering and efficient UV photoluminescence from well-aligned ZnO nanowires epitaxially grown on GaN buffer layer.
    Cheng HM; Hsu HC; Tseng YK; Lin LJ; Hsieh WF
    J Phys Chem B; 2005 May; 109(18):8749-54. PubMed ID: 16852037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stimulated emissions in aligned CdS nanowires at room temperature.
    Pan A; Liu R; Yang Q; Zhu Y; Yang G; Zou B; Chen K
    J Phys Chem B; 2005 Dec; 109(51):24268-72. PubMed ID: 16375423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical and field emission properties of thin single-crystalline GaN nanowires.
    Ha B; Seo SH; Cho JH; Yoon CS; Yoo J; Yi GC; Park CY; Lee CJ
    J Phys Chem B; 2005 Jun; 109(22):11095-9. PubMed ID: 16852353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers.
    Willander M; Nur O; Zhao QX; Yang LL; Lorenz M; Cao BQ; Zúñiga Pérez J; Czekalla C; Zimmermann G; Grundmann M; Bakin A; Behrends A; Al-Suleiman M; El-Shaer A; Che Mofor A; Postels B; Waag A; Boukos N; Travlos A; Kwack HS; Guinard J; Le Si Dang D
    Nanotechnology; 2009 Aug; 20(33):332001. PubMed ID: 19636090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system.
    Fedutik Y; Temnov V; Woggon U; Ustinovich E; Artemyev M
    J Am Chem Soc; 2007 Dec; 129(48):14939-45. PubMed ID: 17994742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature.
    Zhang G; Takiguchi M; Tateno K; Tawara T; Notomi M; Gotoh H
    Sci Adv; 2019 Feb; 5(2):eaat8896. PubMed ID: 30801006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical response of wurtzite and zinc blende GaP nanowire arrays.
    Aghaeipour M; Anttu N; Nylund G; Berg A; Lehmann S; Pistol ME
    Opt Express; 2015 Nov; 23(23):30177-87. PubMed ID: 26698498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sulfur-doped gallium phosphide nanowires and their optoelectronic properties.
    Chen ZG; Cheng L; Lu GQ; Zou J
    Nanotechnology; 2010 Sep; 21(37):375701. PubMed ID: 20714054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-quality ZnO nanowire arrays directly fabricated from photoresists.
    Cheng C; Lei M; Feng L; Wong TL; Ho KM; Fung KK; Loy MM; Yu D; Wang N
    ACS Nano; 2009 Jan; 3(1):53-8. PubMed ID: 19206248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure.
    Kubota Y; Watanabe K; Tsuda O; Taniguchi T
    Science; 2007 Aug; 317(5840):932-4. PubMed ID: 17702939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron transport in Si nanochains/nanowires.
    Kohno H; Kikuo I; Oto K
    J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i15-9. PubMed ID: 16157634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.