These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 11398411)
41. Microbial deterioration of stone monuments--an updated overview. Scheerer S; Ortega-Morales O; Gaylarde C Adv Appl Microbiol; 2009; 66():97-139. PubMed ID: 19203650 [TBL] [Abstract][Full Text] [Related]
42. Composition and architecture of biofilms on used voice prostheses. Buijssen KJ; van der Laan BF; van der Mei HC; Atema-Smit J; van den Huijssen P; Busscher HJ; Harmsen HJ Head Neck; 2012 Jun; 34(6):863-71. PubMed ID: 21953690 [TBL] [Abstract][Full Text] [Related]
43. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Daims H; Nielsen JL; Nielsen PH; Schleifer KH; Wagner M Appl Environ Microbiol; 2001 Nov; 67(11):5273-84. PubMed ID: 11679356 [TBL] [Abstract][Full Text] [Related]
44. Detection of legionella in various sample types using whole-cell fluorescent in situ hybridization. Declerck P; Ollevier F Methods Mol Biol; 2006; 345():175-83. PubMed ID: 16957355 [TBL] [Abstract][Full Text] [Related]
45. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Daims H; Brühl A; Amann R; Schleifer KH; Wagner M Syst Appl Microbiol; 1999 Sep; 22(3):434-44. PubMed ID: 10553296 [TBL] [Abstract][Full Text] [Related]
46. A polyphasic approach to study ecophysiology of complex multispecies nitrifying biofilms. Okabe S; Satoh H; Kindaichi T Methods Enzymol; 2011; 496():163-84. PubMed ID: 21514464 [TBL] [Abstract][Full Text] [Related]
47. Environmental stimuli drive a transition from cooperation to competition in synthetic phototrophic communities. Zuñiga C; Li CT; Yu G; Al-Bassam MM; Li T; Jiang L; Zaramela LS; Guarnieri M; Betenbaugh MJ; Zengler K Nat Microbiol; 2019 Dec; 4(12):2184-2191. PubMed ID: 31591554 [TBL] [Abstract][Full Text] [Related]
48. Use of locked nucleic acid oligonucleotides as hybridization/FRET probes for quantification of 16S rDNA by real-time PCR. Goldenberg O; Landt O; Schumann RR; Göbel UB; Hamann L Biotechniques; 2005 Jan; 38(1):29-30, 32. PubMed ID: 15679080 [No Abstract] [Full Text] [Related]
49. Microbial communities and their interactions in biofilm systems: an overview. Wuertz S; Okabe S; Hausner M Water Sci Technol; 2004; 49(11-12):327-36. PubMed ID: 15303758 [TBL] [Abstract][Full Text] [Related]
50. Real-time TaqMan PCR for quantifying oral bacteria during biofilm formation. Suzuki N; Nakano Y; Yoshida A; Yamashita Y; Kiyoura Y J Clin Microbiol; 2004 Aug; 42(8):3827-30. PubMed ID: 15297540 [TBL] [Abstract][Full Text] [Related]
51. Development of a 16S rRNA-targeted probe set for Verrucomicrobia and its application for fluorescence in situ hybridization in a humic lake. Arnds J; Knittel K; Buck U; Winkel M; Amann R Syst Appl Microbiol; 2010 Apr; 33(3):139-48. PubMed ID: 20226613 [TBL] [Abstract][Full Text] [Related]
52. Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system. Labrenz M; Banfield JF Microb Ecol; 2004 Apr; 47(3):205-17. PubMed ID: 14994175 [TBL] [Abstract][Full Text] [Related]
53. Shifts of microbial communities of wheat (Triticum aestivum L.) cultivation in a closed artificial ecosystem. Qin Y; Fu Y; Dong C; Jia N; Liu H Appl Microbiol Biotechnol; 2016 May; 100(9):4085-95. PubMed ID: 26841890 [TBL] [Abstract][Full Text] [Related]
54. Fluorescence in situ hybridization of uncultured zoosporic fungi: Testing with clone-FISH and application to freshwater samples using CARD-FISH. Jobard M; Rasconi S; Sime-Ngando T J Microbiol Methods; 2010 Nov; 83(2):236-43. PubMed ID: 20849888 [TBL] [Abstract][Full Text] [Related]
55. Biological filtration limits carbon availability and affects downstream biofilm formation and community structure. Pang CM; Liu WT Appl Environ Microbiol; 2006 Sep; 72(9):5702-12. PubMed ID: 16957184 [TBL] [Abstract][Full Text] [Related]
56. Assessment of methods to recover DNA from bacteria, fungi and archaea in complex environmental samples. Guillén-Navarro K; Herrera-López D; López-Chávez MY; Cancino-Gómez M; Reyes-Reyes AL Folia Microbiol (Praha); 2015 Nov; 60(6):551-8. PubMed ID: 26014885 [TBL] [Abstract][Full Text] [Related]
57. Methods of studying soil microbial diversity. Kirk JL; Beaudette LA; Hart M; Moutoglis P; Klironomos JN; Lee H; Trevors JT J Microbiol Methods; 2004 Aug; 58(2):169-88. PubMed ID: 15234515 [TBL] [Abstract][Full Text] [Related]
59. In situ methods for assessment of microorganisms and their activities. Amann R; Kühl M Curr Opin Microbiol; 1998 Jun; 1(3):352-8. PubMed ID: 10066487 [TBL] [Abstract][Full Text] [Related]
60. Community structure and dynamics of small eukaryotes targeted by new oligonucleotide probes: new insight into the lacustrine microbial food web. Mangot JF; Lepère C; Bouvier C; Debroas D; Domaizon I Appl Environ Microbiol; 2009 Oct; 75(19):6373-81. PubMed ID: 19666727 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]