These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11398420)

  • 41. Effect of pH on production of virulence factors by biofilm cells of Pseudomonas aeruginosa.
    Harjai K; Khandwahaa RK; Mittal R; Yadav V; Gupta V; Sharma S
    Folia Microbiol (Praha); 2005; 50(2):99-102. PubMed ID: 16110911
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mucoid Pseudomonas aeruginosa isolates maintain the biofilm formation capacity and the gene expression profiles during the chronic lung infection of CF patients.
    Lee B; Schjerling CK; Kirkby N; Hoffmann N; Borup R; Molin S; Høiby N; Ciofu O
    APMIS; 2011 Apr; 119(4-5):263-74. PubMed ID: 21492226
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms.
    Sarkisova S; Patrauchan MA; Berglund D; Nivens DE; Franklin MJ
    J Bacteriol; 2005 Jul; 187(13):4327-37. PubMed ID: 15968041
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intrinsic and environmental mutagenesis drive diversification and persistence of Pseudomonas aeruginosa in chronic lung infections.
    Rodríguez-Rojas A; Oliver A; Blázquez J
    J Infect Dis; 2012 Jan; 205(1):121-7. PubMed ID: 22080096
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections.
    Pier GB; Grout M; Zaidi TS; Olsen JC; Johnson LG; Yankaskas JR; Goldberg JB
    Science; 1996 Jan; 271(5245):64-7. PubMed ID: 8539601
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Epidemiological investigation and glycotyping of clinical Pseudomonas aeruginosa isolates from patients with cystic fibrosis by mass spectrometry: association with multiple drug resistance.
    Altman E; Wang Z; Aaron SD; Liu X; Vandemheen KL; Ferris W; Giesbrecht T; Li J
    J Microbiol Methods; 2009 Feb; 76(2):204-8. PubMed ID: 19000720
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Alginate, elastase and alkaline protease production of Pseudomonas aeruginosa strains isolated from various body sites].
    Ciragil P; Söyletir G
    Mikrobiyol Bul; 2004 Oct; 38(4):341-7. PubMed ID: 15700659
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glucose stimulates alginate production and algD transcription in Pseudomonas aeruginosa.
    Ma JF; Phibbs PV; Hassett DJ
    FEMS Microbiol Lett; 1997 Mar; 148(2):217-21. PubMed ID: 9084150
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hemolytic phospholipase C inhibition protects lung function during Pseudomonas aeruginosa infection.
    Wargo MJ; Gross MJ; Rajamani S; Allard JL; Lundblad LK; Allen GB; Vasil ML; Leclair LW; Hogan DA
    Am J Respir Crit Care Med; 2011 Aug; 184(3):345-54. PubMed ID: 21562128
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Great phenotypic and genetic variation among successive chronic Pseudomonas aeruginosa from a cystic fibrosis patient.
    Lozano C; Azcona-Gutiérrez JM; Van Bambeke F; Sáenz Y
    PLoS One; 2018; 13(9):e0204167. PubMed ID: 30212579
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pseudomonas aeruginosa infection and cystic fibrosis.
    Kato K; Takayama T
    Lancet; 2002 Jan; 359(9302):262. PubMed ID: 11812595
    [No Abstract]   [Full Text] [Related]  

  • 52. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis.
    Ramsey DM; Wozniak DJ
    Mol Microbiol; 2005 Apr; 56(2):309-22. PubMed ID: 15813726
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Low-Molecular-Weight Alginate Oligosaccharide Disrupts Pseudomonal Microcolony Formation and Enhances Antibiotic Effectiveness.
    Pritchard MF; Powell LC; Jack AA; Powell K; Beck K; Florance H; Forton J; Rye PD; Dessen A; Hill KE; Thomas DW
    Antimicrob Agents Chemother; 2017 Sep; 61(9):. PubMed ID: 28630204
    [TBL] [Abstract][Full Text] [Related]  

  • 54. How mutant CFTR may contribute to Pseudomonas aeruginosa infection in cystic fibrosis.
    Pier GB; Grout M; Zaidi TS; Goldberg JB
    Am J Respir Crit Care Med; 1996 Oct; 154(4 Pt 2):S175-82. PubMed ID: 8876538
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adaptations of Pseudomonas aeruginosa to the cystic fibrosis lung environment can include deregulation of zwf, encoding glucose-6-phosphate dehydrogenase.
    Silo-Suh L; Suh SJ; Phibbs PV; Ohman DE
    J Bacteriol; 2005 Nov; 187(22):7561-8. PubMed ID: 16267280
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Association of alginate from Pseudomonas aeruginosa with two forms of heparin-binding lectin isolated from rat lung.
    Ceri H; McArthur HA; Whitfield C
    Infect Immun; 1986 Jan; 51(1):1-5. PubMed ID: 3079726
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections.
    Ciofu O; Mandsberg LF; Wang H; Høiby N
    FEMS Immunol Med Microbiol; 2012 Jul; 65(2):215-25. PubMed ID: 22540844
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mucoid Pseudomonas in cystic fibrosis.
    Pritt B; O'Brien L; Winn W
    Am J Clin Pathol; 2007 Jul; 128(1):32-4. PubMed ID: 17580270
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression of the Klebsiella pneumoniae alginate lyase gene in Pseudomonas aeruginosa--effect on alginate structure.
    Tatnell PJ; Goldberg JB; Gacesa P
    Biochem Soc Trans; 1996 Aug; 24(3):407S. PubMed ID: 8878951
    [No Abstract]   [Full Text] [Related]  

  • 60. Contribution of oxygen-limiting conditions to persistent infection of Pseudomonas aeruginosa.
    Schobert M; Tielen P
    Future Microbiol; 2010 Apr; 5(4):603-21. PubMed ID: 20353301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.