These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 11398449)

  • 1. Use of a continuous culture system linked to a modified Robbins device or flow cell to study attachment of bacteria to surfaces.
    Millar MR; Linton CJ; Sherriff A
    Methods Enzymol; 2001; 337():43-62. PubMed ID: 11398449
    [No Abstract]   [Full Text] [Related]  

  • 2. Use of a modified Robbins device to directly compare the adhesion of Staphylococcus epidermidis RP62A to surfaces.
    Linton CJ; Sherriff A; Millar MR
    J Appl Microbiol; 1999 Feb; 86(2):194-202. PubMed ID: 10063617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid, non-destructive method for the determination of Staphylococcus epidermidis adhesion to surfaces using quartz crystal resonant sensor technology.
    Pavey KD; Barnes LM; Hanlon GW; Olliff CJ; Ali Z; Paul F
    Lett Appl Microbiol; 2001 Nov; 33(5):344-8. PubMed ID: 11696093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Robbins device to evaluate antimicrobial activity against bacterial biofilms on central venous catheters.
    Mekni MA; Achour W; Ben Hassen A
    Tunis Med; 2015 Mar; 93(3):153-7. PubMed ID: 26367403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods for studying biofilms produced by Staphylococcus epidermidis.
    Deighton MA; Capstick J; Domalewski E; van Nguyen T
    Methods Enzymol; 2001; 336():177-95. PubMed ID: 11403072
    [No Abstract]   [Full Text] [Related]  

  • 6. Determination of biofilm mechanical properties from tensile tests performed using a micro-cantilever method.
    Aggarwal S; Hozalski RM
    Biofouling; 2010 May; 26(4):479-86. PubMed ID: 20390563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An open channel flow chamber for characterizing biofilm formation on biomaterial surfaces.
    An YH; McGlohorn JB; Bednarski BK; Martin KL; Friedman RJ
    Methods Enzymol; 2001; 337():79-88. PubMed ID: 11398453
    [No Abstract]   [Full Text] [Related]  

  • 8. Staphylococcus epidermidis biofilm formation and structural organization on different types of intraocular lenses under in vitro flow conditions.
    Baillif S; Leduff F; Hartmann DJ; Kodjikian L
    Ophthalmic Res; 2013; 50(2):83-90. PubMed ID: 23797392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Models for studying initial adhesion and surface growth in biofilm formation on surfaces.
    Gottenbos B; van der Mei HC; Busscher HJ
    Methods Enzymol; 1999; 310():523-34. PubMed ID: 10547816
    [No Abstract]   [Full Text] [Related]  

  • 10. A new device for rapid evaluation of biofilm formation potential by bacteria.
    Chavant P; Gaillard-Martinie B; Talon R; Hébraud M; Bernardi T
    J Microbiol Methods; 2007 Mar; 68(3):605-12. PubMed ID: 17218029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Versatile and Rapidly Deployable Device to Enable Spatiotemporal Observations of the Sessile Microbes and Environmental Surfaces.
    Kiyokawa T; Usuba R; Obana N; Yokokawa M; Toyofuku M; Suzuki H; Nomura N
    Microbes Environ; 2017 Mar; 32(1):88-91. PubMed ID: 28321008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attachment of bacteria to model solid surfaces: oligo(ethylene glycol) surfaces inhibit bacterial attachment.
    Ista LK; Fan H; Baca O; López GP
    FEMS Microbiol Lett; 1996 Aug; 142(1):59-63. PubMed ID: 8759791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro.
    MacKintosh EE; Patel JD; Marchant RE; Anderson JM
    J Biomed Mater Res A; 2006 Sep; 78(4):836-42. PubMed ID: 16817192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis.
    Cerca N; Pier GB; Vilanova M; Oliveira R; Azeredo J
    Res Microbiol; 2005 May; 156(4):506-14. PubMed ID: 15862449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofilms in flowing systems.
    Bott TR; Grant DM
    Methods Enzymol; 2001; 337():88-103. PubMed ID: 11398454
    [No Abstract]   [Full Text] [Related]  

  • 16. Minimal attachment killing (MAK): a versatile method for susceptibility testing of attached biofilm-positive and -negative Staphylococcus epidermidis.
    Knobloch JK; Von Osten H; Horstkotte MA; Rohde H; Mack D
    Med Microbiol Immunol; 2002 Oct; 191(2):107-14. PubMed ID: 12410350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a modified rotating disk reactor for the cultivation of Staphylococcus epidermidis biofilm.
    Cotter JJ; O'Gara JP; Stewart PS; Pitts B; Casey E
    J Appl Microbiol; 2010 Dec; 109(6):2105-17. PubMed ID: 20846333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acceleration of the formation of biofilms on contact lens surfaces in the presence of neutrophil-derived cellular debris is conserved across multiple genera.
    Patel NB; Hinojosa JA; Zhu M; Robertson DM
    Mol Vis; 2018; 24():94-104. PubMed ID: 29422767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and testing of a novel microcantilever technique for measuring the cohesive strength of intact biofilms.
    Aggarwal S; Poppele EH; Hozalski RM
    Biotechnol Bioeng; 2010 Apr; 105(5):924-34. PubMed ID: 19953669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous drip flow system to develop biofilm of E. faecalis under anaerobic conditions.
    Gonzalez AM; Corpus E; Pozos-Guillen A; Silva-Herzog D; Aragon-Piña A; Cohenca N
    ScientificWorldJournal; 2014; 2014():706189. PubMed ID: 25371913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.