BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 11398916)

  • 1. Modification of lignin for the production of new compounded materials.
    Hüttermann A; Mai C; Kharazipour A
    Appl Microbiol Biotechnol; 2001 May; 55(4):387-94. PubMed ID: 11398916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laccase mediator systems for eco-friendly production of medium-density fiberboard (MDF) on a pilot scale: physicochemical analysis of the reaction mechanism.
    Euring M; Rühl M; Ritter N; Kües U; Kharazipour A
    Biotechnol J; 2011 Oct; 6(10):1253-61. PubMed ID: 22081820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laccase-Catalyzed Surface Modification of Thermo-Mechanical Pulp (TMP) for the Production of Wood Fiber Insulation Boards Using Industrial Process Water.
    Schubert M; Ruedin P; Civardi C; Richter M; Hach A; Christen H
    PLoS One; 2015; 10(6):e0128623. PubMed ID: 26046652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laccase-mediated synthesis of lignin-core hyperbranched copolymers.
    Cannatelli MD; Ragauskas AJ
    Appl Microbiol Biotechnol; 2017 Aug; 101(16):6343-6353. PubMed ID: 28589227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic modification of kraft lignin through oxidative coupling with water-soluble phenols.
    Lund M; Ragauskas AJ
    Appl Microbiol Biotechnol; 2001 Jun; 55(6):699-703. PubMed ID: 11525617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic properties of oxidation species generated in the lignin of wood fibers by a laccase catalyzed treatment: electronic hole state migration and stabilization in the lignin matrix.
    Barsberg S; Thygesen LG
    Biochim Biophys Acta; 1999 Nov; 1472(3):625-42. PubMed ID: 10564777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin.
    Martínez AT; Speranza M; Ruiz-Dueñas FJ; Ferreira P; Camarero S; Guillén F; Martínez MJ; Gutiérrez A; del Río JC
    Int Microbiol; 2005 Sep; 8(3):195-204. PubMed ID: 16200498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic Oxidation of Ca-Lignosulfonate and Kraft Lignin in Different Lignin-Laccase-Mediator-Systems and MDF Production.
    Euring M; Ostendorf K; Rühl M; Kües U
    Front Bioeng Biotechnol; 2021; 9():788622. PubMed ID: 35155404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of lignin into value-added materials and chemicals via laccase-assisted copolymerization.
    Cannatelli MD; Ragauskas AJ
    Appl Microbiol Biotechnol; 2016 Oct; 100(20):8685-91. PubMed ID: 27645296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferritin 2 domain-containing protein found in lacquer tree (Toxicodendron vernicifluum) sap has negative effects on laccase and peroxidase reactions.
    Kitajima S; Imamura T; Iibushi J; Ikenaga M; Tachibana Y; Andoh N; Oyabu H; Hirooka K; Shiina T; Ishizaki Y
    Biosci Biotechnol Biochem; 2017 Jun; 81(6):1165-1175. PubMed ID: 28485213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.
    Zhu H; Luo W; Ciesielski PN; Fang Z; Zhu JY; Henriksson G; Himmel ME; Hu L
    Chem Rev; 2016 Aug; 116(16):9305-74. PubMed ID: 27459699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood.
    Liers C; Arnstadt T; Ullrich R; Hofrichter M
    FEMS Microbiol Ecol; 2011 Oct; 78(1):91-102. PubMed ID: 21631549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Degradation of poplar wood by Fomes sclerodermeus: production of ligninolytic enzymes in sawdust of poplar and cedar].
    Papinutti VL; Diorio LA; Forchiassin F
    Rev Iberoam Micol; 2003 Mar; 20(1):16-20. PubMed ID: 12825976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignin-degrading enzyme activities.
    Chen YR; Sarkanen S; Wang YY
    Methods Mol Biol; 2012; 908():251-68. PubMed ID: 22843404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated hot-compressed water and laccase-mediator treatments of Eucalyptus grandis fibers: structural changes of fiber and lignin.
    Wu JQ; Wen JL; Yuan TQ; Sun RC
    J Agric Food Chem; 2015 Feb; 63(6):1763-72. PubMed ID: 25639522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laccases and Peroxidases Co-Localize in Lignified Secondary Cell Walls throughout Stem Development.
    Hoffmann N; Benske A; Betz H; Schuetz M; Samuels AL
    Plant Physiol; 2020 Oct; 184(2):806-822. PubMed ID: 32699027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification phenomena of solid-state lignin caused by electron-abstracting oxidative systems.
    Barsberg S
    Arch Biochem Biophys; 2002 Aug; 404(1):62-70. PubMed ID: 12127070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green Binder Based on Enzymatically Polymerized Eucalypt Kraft Lignin for Fiberboard Manufacturing: A Preliminary Study.
    Gouveia S; Otero LA; Fernández-Costas C; Filgueira D; Sanromán Á; Moldes D
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laccases for biorefinery applications: a critical review on challenges and perspectives.
    Roth S; Spiess AC
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymerization of monolignols by redox shuttle-mediated enzymatic oxidation: a new model in lignin biosynthesis I.
    Onnerud H; Zhang L; Gellerstedt G; Henriksson G
    Plant Cell; 2002 Aug; 14(8):1953-62. PubMed ID: 12172033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.