These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 11398932)

  • 1. Constitutive and inducible hydroxylase activities involved in the degradation of naphthalene by Cunninghamella elegans.
    Faber BW; Schonewille AB; van Gorcom RF; Duine JA
    Appl Microbiol Biotechnol; 2001 May; 55(4):486-91. PubMed ID: 11398932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformation enzymes in Cunninghamella blakesleeana (NCIM-687).
    Bhosale S; Saratale G; Govindwar S
    J Basic Microbiol; 2006; 46(6):444-8. PubMed ID: 17139609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Regulation of the synthesis of the key enzymes for naphthalene catabolism in Pseudomonas putida and Pseudomonas fluorescens carrying the biodegradation plasmids NAH, pBS3, pBS2 and NPL-1].
    Starovoĭtov II
    Mikrobiologiia; 1985; 54(5):755-62. PubMed ID: 3937034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation of 1-hydroxymethylnaphthalene and 6-hydroxymethylquinoline by both oxidative and reductive routes in Cunninghamella elegans.
    Mountfield RJ; Hopper DJ
    Appl Microbiol Biotechnol; 1998 Sep; 50(3):379-83. PubMed ID: 9802224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Stability of the NPL-1 and NPL-41 plasmids of naphthalene biodegradation in Pseudomonas putida populations in continuous culture].
    Boronin AM; Filonov AE; Balakshina VV; Kulakova AN
    Mikrobiologiia; 1985; 54(4):610-5. PubMed ID: 4058326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polycyclic aromatic hydrocarbon (PAH) metabolizing enzyme activities in human lung, and their inducibility by exposure to naphthalene, phenanthrene, pyrene, chrysene, and benzo(a)pyrene as shown in the rat lung and liver.
    Elovaara E; Mikkola J; Stockmann-Juvala H; Luukkanen L; Keski-Hynnilä H; Kostiainen R; Pasanen M; Pelkonen O; Vainio H
    Arch Toxicol; 2007 Mar; 81(3):169-82. PubMed ID: 16906435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Genetic control of naphthalene biodegradation by a strain of Pseudomonas sp. 8909N].
    Kosheleva IA; Sokolov SL; Balashova NV; Filonov AE; Meleshko EI; Gaiazov RR; Boronin AM
    Genetika; 1997 Jun; 33(6):762-8. PubMed ID: 9289413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of laccase transcriptome during biodegradation of naphthalene by white rot fungus Pleurotus ostreatus.
    Elhusseiny SM; Amin HM; Shebl RI
    Int Microbiol; 2019 Jun; 22(2):217-225. PubMed ID: 30810987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of naphthalene by Cunninghamella elegans.
    Cerniglia CE; Gibson DT
    Appl Environ Microbiol; 1977 Oct; 34(4):363-70. PubMed ID: 921262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Degradation of phenanthrene by mutant strains--naphthalene degraders].
    Kosheleva IA; Balasova NV; Izmalkova TIu; Filonov AE; Sokolov SL; Slepen'kin AV; Boronin AM
    Mikrobiologiia; 2000; 69(6):783-9. PubMed ID: 11195577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of naphthalene by cell extracts of Cunninghamella elegans.
    Cerniglia CE; Gibson DT
    Arch Biochem Biophys; 1978 Feb; 186(1):121-7. PubMed ID: 24420
    [No Abstract]   [Full Text] [Related]  

  • 12. Oxidation of phenothiazine and phenoxazine by Cunninghamella elegans.
    Sutherland JB; Freeman JP; Heinze TM; Moody JD; Parshikov IA; Williams AJ; Zhang D
    Xenobiotica; 2001 Nov; 31(11):799-809. PubMed ID: 11765142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of polycyclic hydrocarbons in vitro an aryl hydrocarbon (benzo(a)pyrene) hydroxylase.
    Williams D; Wiebel FJ; Leutz JC; Gelboin HV
    Biochem Pharmacol; 1971 Aug; 20(8):2130-3. PubMed ID: 4109536
    [No Abstract]   [Full Text] [Related]  

  • 14. Metabolism of an Insecticide Fenitrothion by Cunninghamella elegans ATCC36112.
    Zhu YZ; Fu M; Jeong IH; Kim JH; Zhang CJ
    J Agric Food Chem; 2017 Dec; 65(49):10711-10718. PubMed ID: 29144738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of naphthalene catabolism by bioluminescence with nah-lux transcriptional fusions.
    Burlage RS; Sayler GS; Larimer F
    J Bacteriol; 1990 Sep; 172(9):4749-57. PubMed ID: 2203729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of 2-methylnaphthalene by Pseudomonas sp. strain NGK1.
    Sharanagouda U; Karegoudar TB
    Curr Microbiol; 2001 Dec; 43(6):440-3. PubMed ID: 11685513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium tolerance and removal from Cunninghamella elegans related to the polyphosphate metabolism.
    de Lima MA; Franco Lde O; de Souza PM; do Nascimento AE; da Silva CA; Maia Rde C; Rolim HM; Takaki GM
    Int J Mol Sci; 2013 Mar; 14(4):7180-92. PubMed ID: 23538844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions.
    Dou J; Liu X; Ding A
    J Hazard Mater; 2009 Jun; 165(1-3):325-31. PubMed ID: 19013017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Thermosensitivity of naphthalene biodegradation plasmids].
    Kochetkov VV; Boronin AM
    Mikrobiologiia; 1983; 52(1):27-32. PubMed ID: 6405131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons.
    Cerniglia CE; White GL; Heflich RH
    Arch Microbiol; 1985 Nov; 143(2):105-10. PubMed ID: 3907570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.