These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 11399329)

  • 21. Correlation between head direction cell activity and spatial behavior on a radial arm maze.
    Dudchenko PA; Taube JS
    Behav Neurosci; 1997 Feb; 111(1):3-19. PubMed ID: 9109620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neonatal ventral hippocampus lesions disrupt extra-dimensional shift and alter dendritic spine density in the medial prefrontal cortex of juvenile rats.
    Marquis JP; Goulet S; Doré FY
    Neurobiol Learn Mem; 2008 Sep; 90(2):339-46. PubMed ID: 18490183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of the effects of hippocampal or prefrontal cortical lesions on three versions of delayed non-matching-to-sample based on positional or spatial cues.
    Porter MC; Burk JA; Mair RG
    Behav Brain Res; 2000 Apr; 109(1):69-81. PubMed ID: 10699659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strategic neuronal encoding in medial prefrontal cortex of spatial working memory in the T-maze.
    Yang Y; Mailman RB
    Behav Brain Res; 2018 May; 343():50-60. PubMed ID: 29378292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coding for spatial goals in the prelimbic/infralimbic area of the rat frontal cortex.
    Hok V; Save E; Lenck-Santini PP; Poucet B
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4602-7. PubMed ID: 15761059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thalamic-cortical-striatal circuitry subserves working memory during delayed responding on a radial arm maze.
    Floresco SB; Braaksma DN; Phillips AG
    J Neurosci; 1999 Dec; 19(24):11061-71. PubMed ID: 10594086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Place and response learning of rats in a Morris water maze: differential effects of fimbria fornix and medial prefrontal cortex lesions.
    de Bruin JP; Moita MP; de Brabander HM; Joosten RN
    Neurobiol Learn Mem; 2001 Mar; 75(2):164-78. PubMed ID: 11222058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal Dynamics of Hippocampal and Medial Prefrontal Cortex Interactions During the Delay Period of a Working Memory-Guided Foraging Task.
    Myroshnychenko M; Seamans JK; Phillips AG; Lapish CC
    Cereb Cortex; 2017 Nov; 27(11):5331-5342. PubMed ID: 28927240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Abused Inhalant Toluene Impairs Medial Prefrontal Cortex Activity and Risk/Reward Decision-Making during a Probabilistic Discounting Task.
    Braunscheidel KM; Okas MP; Hoffman M; Mulholland PJ; Floresco SB; Woodward JJ
    J Neurosci; 2019 Nov; 39(46):9207-9220. PubMed ID: 31548237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Medial prefrontal cortex lesions and spatial delayed alternation in the developing rat: recovery or sparing?
    Freeman JH; Stanton ME
    Behav Neurosci; 1992 Dec; 106(6):924-32. PubMed ID: 1472294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural signals in the monkey ventral striatum related to motivation for juice and cocaine rewards.
    Bowman EM; Aigner TG; Richmond BJ
    J Neurophysiol; 1996 Mar; 75(3):1061-73. PubMed ID: 8867118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of electrolytic lesions of the medial prefrontal cortex or its subfields on 4-arm baited, 8-arm radial maze, two-way active avoidance and conditioned fear tasks in the rat.
    Joel D; Tarrasch R; Feldon J; Weiner I
    Brain Res; 1997 Aug; 765(1):37-50. PubMed ID: 9310392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Learning-induced enduring changes in functional connectivity among prefrontal cortical neurons.
    Baeg EH; Kim YB; Kim J; Ghim JW; Kim JJ; Jung MW
    J Neurosci; 2007 Jan; 27(4):909-18. PubMed ID: 17251433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Memory of radial maze behavior in pigeons after ablations of the presumed equivalent of mammalian prefrontal cortex.
    Gagliardo A; Mazzotto M; Divac I
    Behav Neurosci; 1997 Oct; 111(5):955-62. PubMed ID: 9383516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Different representation of forthcoming reward in nucleus accumbens and medial prefrontal cortex.
    Miyazaki K; Miyazaki KW; Matsumoto G
    Neuroreport; 2004 Mar; 15(4):721-6. PubMed ID: 15094484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial memory extinction: a c-Fos protein mapping study.
    Méndez-Couz M; Conejo NM; Vallejo G; Arias JL
    Behav Brain Res; 2014 Mar; 260():101-10. PubMed ID: 24315832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activity of primate orbitofrontal and dorsolateral prefrontal neurons: effect of reward schedule on task-related activity.
    Ichihara-Takeda S; Funahashi S
    J Cogn Neurosci; 2008 Apr; 20(4):563-79. PubMed ID: 18052781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lesion of the ventral and intermediate hippocampus abolishes anticipatory activity in the medial prefrontal cortex of the rat.
    Burton BG; Hok V; Save E; Poucet B
    Behav Brain Res; 2009 May; 199(2):222-34. PubMed ID: 19103227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of hippocampal place cell activity to learning and formation of goal-directed navigation in rats.
    Kobayashi T; Tran AH; Nishijo H; Ono T; Matsumoto G
    Neuroscience; 2003; 117(4):1025-35. PubMed ID: 12654354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stress impairs performance in spatial water maze learning tasks.
    Hölscher C
    Behav Brain Res; 1999 Apr; 100(1-2):225-35. PubMed ID: 10212070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.