These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 11399900)

  • 1. Oleate oxidation and mitochondrial substrate selection in vascular smooth muscle.
    Allen TJ; Hardin CD
    J Vasc Res; 2001; 38(3):276-87. PubMed ID: 11399900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of glycogen storage on vascular smooth muscle metabolism.
    Allen TJ; Hardin CD
    Am J Physiol Heart Circ Physiol; 2000 Jun; 278(6):H1993-2002. PubMed ID: 10843898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern of substrate utilization in vascular smooth muscle using 13C isotopomer analysis of glutamate.
    Allen TM; Hardin CD
    Am J Physiol; 1998 Dec; 275(6):H2227-35. PubMed ID: 9843823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential regulation of glucose and glycogen metabolism in vascular smooth muscle by exogenous substrates.
    Hardin CD; Roberts TM
    J Mol Cell Cardiol; 1997 Apr; 29(4):1207-16. PubMed ID: 9160872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of acetate and octanoate and its relation to glucose metabolism in contracting porcine carotid artery.
    Barron JT; Bárány M; Gu L; Parrillo JE
    Biochim Biophys Acta; 1997 Dec; 1322(2-3):208-20. PubMed ID: 9452767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of serum albumin on vascular smooth muscle metabolism.
    Barron JT; Gu L; Rodriguez ER; Parrillo JE
    Biochim Biophys Acta; 2000 Jul; 1459(1):35-48. PubMed ID: 10924897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetate or octanoate increases glycogenolysis in smooth muscle as determined by 13C-NMR.
    Gann VK; Hardin CD
    Physiol Chem Phys Med NMR; 1997; 29(1):23-32. PubMed ID: 9353955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition between acetate and oleate for the formation of malonyl-CoA and mitochondrial acetyl-CoA in the perfused rat heart.
    Bian F; Kasumov T; Jobbins KA; Minkler PE; Anderson VE; Kerner J; Hoppel CL; Brunengraber H
    J Mol Cell Cardiol; 2006 Nov; 41(5):868-75. PubMed ID: 17020764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial transporters involved in oleic acid utilization and glutamate metabolism in yeast.
    Trotter PJ; Adamson AL; Ghrist AC; Rowe L; Scott LR; Sherman MP; Stites NC; Sun Y; Tawiah-Boateng MA; Tibbetts AS; Wadington MC; West AC
    Arch Biochem Biophys; 2005 Oct; 442(1):21-32. PubMed ID: 16140254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation.
    Sharma N; Okere IC; Brunengraber DZ; McElfresh TA; King KL; Sterk JP; Huang H; Chandler MP; Stanley WC
    J Physiol; 2005 Jan; 562(Pt 2):593-603. PubMed ID: 15550462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in the oxidative metabolic profile in vascular smooth muscle from hyperlipidemic and diabetic swine.
    Roberts TM; Sturek M; Dixon JL; Hardin CD
    Mol Cell Biochem; 2001 Jan; 217(1-2):99-106. PubMed ID: 11269671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial oxidative substrate selection in porcine bladder smooth muscle.
    Hardin CD; Kleiber B; Roberts TM
    J Urol; 2003 Nov; 170(5):2063-6. PubMed ID: 14532854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of oxidation of mitochondrial fatty acids and of acetate by acetylcarnitine.
    Siliprandi N; Siliprandi D; Ciman M
    Biochem J; 1965 Sep; 96(3):777-80. PubMed ID: 5862415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of glutamate and aspartate on myocardial substrate oxidation during potassium arrest.
    Reed MK; Barak C; Malloy CR; Maniscalco SP; Jessen ME
    J Thorac Cardiovasc Surg; 1996 Dec; 112(6):1651-60. PubMed ID: 8975857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular smooth muscle glycogen metabolism studied by 13C-NMR.
    Hardin CD; Kushmerick MJ; Roberts TM
    J Vasc Res; 1995; 32(5):293-300. PubMed ID: 7578797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy substrate metabolism in fresh and stored human platelets.
    Cohen P; Wittels B
    J Clin Invest; 1970 Jan; 49(1):119-27. PubMed ID: 5409800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of calcium-induced workload transitions and fatty acid supply on myocardial substrate selection.
    Ala-Rämi A; Ylihautala M; Ingman P; Hassinen IE
    Metabolism; 2005 Mar; 54(3):410-20. PubMed ID: 15736122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PPARδ activation in human myotubes increases mitochondrial fatty acid oxidative capacity and reduces glucose utilization by a switch in substrate preference.
    Feng YZ; Nikolić N; Bakke SS; Boekschoten MV; Kersten S; Kase ET; Rustan AC; Thoresen GH
    Arch Physiol Biochem; 2014 Feb; 120(1):12-21. PubMed ID: 23991827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased availability of endogenous and dietary oleic acid contributes to the upregulation of cardiac fatty acid oxidation.
    Dobrzyn P; Pyrkowska A; Jazurek M; Dobrzyn A
    Mitochondrion; 2012 Jan; 12(1):132-7. PubMed ID: 21664496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of glucose and long chain fatty acids (C18) on antioxidant defences and free radical damage in porcine vascular smooth muscle cells in vitro.
    Hamilton JS; Powell LA; McMaster C; McMaster D; Trimble ER
    Diabetologia; 2003 Jan; 46(1):106-14. PubMed ID: 12637989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.