These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11400558)

  • 1. Prediction of Caco-2 cell permeability using partial least squares multivariate analysis.
    Tantishaiyakul V
    Pharmazie; 2001 May; 56(5):407-11. PubMed ID: 11400558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of aqueous solubility of organic salts of diclofenac using PLS and molecular modeling.
    Tantishaiyakul V
    Int J Pharm; 2004 May; 275(1-2):133-9. PubMed ID: 15081144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the aqueous solubility of benzylamine salts using QSPR model.
    Tantishaiyakul V
    J Pharm Biomed Anal; 2005 Feb; 37(2):411-5. PubMed ID: 15708687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADME evaluation in drug discovery. 5. Correlation of Caco-2 permeation with simple molecular properties.
    Hou TJ; Zhang W; Xia K; Qiao XB; Xu XJ
    J Chem Inf Comput Sci; 2004; 44(5):1585-600. PubMed ID: 15446816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical calculation and prediction of Caco-2 cell permeability using MolSurf parametrization and PLS statistics.
    Norinder U; Osterberg T; Artursson P
    Pharm Res; 1997 Dec; 14(12):1786-91. PubMed ID: 9453069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative structure/property relationship analysis of Caco-2 permeability using a genetic algorithm-based partial least squares method.
    Yamashita F; Wanchana S; Hashida M
    J Pharm Sci; 2002 Oct; 91(10):2230-9. PubMed ID: 12226850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of solubility parameters using partial least square regression.
    Tantishaiyakul V; Worakul N; Wongpoowarak W
    Int J Pharm; 2006 Nov; 325(1-2):8-14. PubMed ID: 16839717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Caco-2 permeability using support vector machine and chemistry development kit.
    Guangli M; Yiyu C
    J Pharm Pharm Sci; 2006; 9(2):210-21. PubMed ID: 16959190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined 4D-fingerprint and clustering based membrane-interaction QSAR analyses for constructing consensus Caco-2 cell permeation virtual screens.
    Santos-Filho OA; Hopfinger AJ
    J Pharm Sci; 2008 Jan; 97(1):566-83. PubMed ID: 17696143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorption classification of oral drugs based on molecular surface properties.
    Bergström CA; Strafford M; Lazorova L; Avdeef A; Luthman K; Artursson P
    J Med Chem; 2003 Feb; 46(4):558-70. PubMed ID: 12570377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caco-2 cell permeability modelling: a neural network coupled genetic algorithm approach.
    Di Fenza A; Alagona G; Ghio C; Leonardi R; Giolitti A; Madami A
    J Comput Aided Mol Des; 2007 Apr; 21(4):207-21. PubMed ID: 17265097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen bonding descriptors in the prediction of human in vivo intestinal permeability.
    Winiwarter S; Ax F; Lennernäs H; Hallberg A; Pettersson C; Karlén A
    J Mol Graph Model; 2003 Jan; 21(4):273-87. PubMed ID: 12479927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Caco-2 cell permeability using a combination of MO-calculation and neural network.
    Fujiwara S; Yamashita F; Hashida M
    Int J Pharm; 2002 Apr; 237(1-2):95-105. PubMed ID: 11955808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs' lipophilicity and molecular weight.
    Camenisch G; Alsenz J; van de Waterbeemd H; Folkers G
    Eur J Pharm Sci; 1998 Oct; 6(4):317-24. PubMed ID: 9795088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADME Properties Evaluation in Drug Discovery: Prediction of Caco-2 Cell Permeability Using a Combination of NSGA-II and Boosting.
    Wang NN; Dong J; Deng YH; Zhu MF; Wen M; Yao ZJ; Lu AP; Wang JB; Cao DS
    J Chem Inf Model; 2016 Apr; 56(4):763-73. PubMed ID: 27018227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSAR application for the prediction of compound permeability with in silico descriptors in practical use.
    Nakao K; Fujikawa M; Shimizu R; Akamatsu M
    J Comput Aided Mol Des; 2009 May; 23(5):309-19. PubMed ID: 19241121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of polar surface area and drug transport processes using simple parameters and PLS statistics.
    Osterberg T; Norinder U
    J Chem Inf Comput Sci; 2000; 40(6):1408-11. PubMed ID: 11128099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MI-QSAR models for prediction of corneal permeability of organic compounds.
    Chen C; Yang J
    Acta Pharmacol Sin; 2006 Feb; 27(2):193-204. PubMed ID: 16412269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro models for the blood-brain barrier.
    Garberg P; Ball M; Borg N; Cecchelli R; Fenart L; Hurst RD; Lindmark T; Mabondzo A; Nilsson JE; Raub TJ; Stanimirovic D; Terasaki T; Oberg JO; Osterberg T
    Toxicol In Vitro; 2005 Apr; 19(3):299-334. PubMed ID: 15713540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative structure-antifungal activity relationship study of oxygenated aromatic essential oil compounds using data structuring and PLS regression analysis.
    Voda K; Boh B; Vrtacnik M
    J Mol Model; 2004 Feb; 10(1):76-84. PubMed ID: 14689256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.