These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 11400722)

  • 21. Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge.
    de Oliveira BL; Rocha BM; Barra LP; Toledo EM; Sundnes J; Weber dos Santos R
    Int J Numer Method Biomed Eng; 2013 Dec; 29(12):1323-37. PubMed ID: 23794390
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relation between transmural deformation and local myofiber direction in canine left ventricle.
    Waldman LK; Nosan D; Villarreal F; Covell JW
    Circ Res; 1988 Sep; 63(3):550-62. PubMed ID: 3409487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electromechanical effects of concentric hypertrophy on the left ventricle: A simulation study.
    Del Bianco F; Colli Franzone P; Scacchi S; Fassina L
    Comput Biol Med; 2018 Aug; 99():236-256. PubMed ID: 30057313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy.
    Vetter FJ; McCulloch AD
    Prog Biophys Mol Biol; 1998; 69(2-3):157-83. PubMed ID: 9785937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptation of cardiac structure by mechanical feedback in the environment of the cell: a model study.
    Arts T; Prinzen FW; Snoeckx LH; Rijcken JM; Reneman RS
    Biophys J; 1994 Apr; 66(4):953-61. PubMed ID: 8038399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of transmural electrical heterogeneities and electrotonic interactions on the dispersion of cardiac repolarization and action potential duration: A simulation study.
    Colli Franzone P; Pavarino LF; Taccardi B
    Math Biosci; 2006 Nov; 204(1):132-65. PubMed ID: 16904130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
    Masithulela F
    Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A model study of intramural dispersion of action potential duration in the canine pulmonary conus.
    Cates AW; Pollard AE
    Ann Biomed Eng; 1998; 26(4):567-76. PubMed ID: 9662149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study.
    Bovendeerd PH; Arts T; Huyghe JM; van Campen DH; Reneman RS
    J Biomech; 1992 Oct; 25(10):1129-40. PubMed ID: 1400513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution of active fiber stress at the beginning of ejection depends on left-ventricular shape.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2638-41. PubMed ID: 21096187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A collocation--Galerkin finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An ionic model of stretch-activated and stretch-modulated currents in rabbit ventricular myocytes.
    Healy SN; McCulloch AD
    Europace; 2005 Sep; 7 Suppl 2():128-34. PubMed ID: 16102510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model.
    Xia L; Huo M; Wei Q; Liu F; Crozier S
    Phys Med Biol; 2005 Apr; 50(8):1901-17. PubMed ID: 15815103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of strain in the left ventricle during diastole with cine-MRI and deformable image registration.
    Veress AI; Gullberg GT; Weiss JA
    J Biomech Eng; 2005 Dec; 127(7):1195-207. PubMed ID: 16502662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle.
    Liu DW; Gintant GA; Antzelevitch C
    Circ Res; 1993 Mar; 72(3):671-87. PubMed ID: 8431990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensitivity of left ventricular mechanics to myofiber architecture: A finite element study.
    Nikou A; Gorman RC; Wenk JF
    Proc Inst Mech Eng H; 2016 Jun; 230(6):594-8. PubMed ID: 26975892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transmural dispersion of myofiber mechanics: implications for electrical heterogeneity in vivo.
    Ashikaga H; Coppola BA; Hopenfeld B; Leifer ES; McVeigh ER; Omens JH
    J Am Coll Cardiol; 2007 Feb; 49(8):909-16. PubMed ID: 17320750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback.
    Pfeiffer ER; Tangney JR; Omens JH; McCulloch AD
    J Biomech Eng; 2014 Feb; 136(2):021007. PubMed ID: 24337452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regional myocardial perfusion and mechanics: a model-based method of analysis.
    Mazhari R; Omens JH; Waldman LK; McCulloch AD
    Ann Biomed Eng; 1998; 26(5):743-55. PubMed ID: 9779946
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical modulation of stretch-induced premature ventricular beats: induction of mechanoelectric adaptation period.
    Dick DJ; Lab MJ
    Cardiovasc Res; 1998 Apr; 38(1):181-91. PubMed ID: 9683920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.