BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11401037)

  • 1. The dynamics of filamentous structures in the apical band, oral crescent, fission line and the postoral meridional filament in Tetrahymena thermophila revealed by monoclonal antibody 12G9.
    Jerka-Dziadosz M; Strzyewska-Jówko I; Wojsa-Lugowska U; Krawczyńska W; Krzywicka A
    Protist; 2001 May; 152(1):53-67. PubMed ID: 11401037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of alteration in the global body plan on the deployment of morphogenesis-related protein epitopes labeled by the monoclonal antibody 12G9 in Tetrahymena thermophila.
    Strzyzewska-Jówko I; Jerka-Dziadosz M; Frankel J
    Protist; 2003 Apr; 154(1):71-90. PubMed ID: 12812371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular polarity in ciliates: persistence of global polarity in a disorganized mutant of Tetrahymena thermophila that disrupts cytoskeletal organization.
    Jerka-Dziadosz M; Jenkins LM; Nelsen EM; Williams NE; Jaeckel-Williams R; Frankel J
    Dev Biol; 1995 Jun; 169(2):644-61. PubMed ID: 7781905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular subdivision of the cortex of dividing Tetrahymena is coupled with the formation of the fission zone.
    Kaczanowska J; Joachimiak E; Buzanska L; Krawczynska W; Wheatley DN; Kaczanowski A
    Dev Biol; 1999 Aug; 212(1):150-64. PubMed ID: 10419692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fenestrin antigen in submembrane skeleton of the ciliate Tetrahymena thermophila is proposed as a marker of cell polarity during cell division and in oral replacement.
    Kaczanowska J; Joachimiak E; Kiersnowska M; Krzywicka A; Golinska K; Kaczanowski A
    Protist; 2003 Jul; 154(2):251-64. PubMed ID: 13677452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between spatial pattern of basal bodies and membrane skeleton (epiplasm) during the cell cycle of Tetrahymena: cdaA mutant and anti-membrane skeleton immunostaining.
    Kaczanowska J; Buzanska L; Ostrowski M
    J Eukaryot Microbiol; 1993; 40(6):747-54. PubMed ID: 8292994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel healing filament in ciliate regeneration.
    Jerka-Dziadosz M; Muszyńska K; Krawczyńska W
    J Eukaryot Microbiol; 1999; 46(5):507-15. PubMed ID: 10519219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoskeleton-related structures in tetrahymena thermophila: microfilaments at the apical and division-furrow rings.
    Jerka-Dziadosz M
    J Cell Sci; 1981 Oct; 51():241-53. PubMed ID: 7198646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of actin in the Tetrahymena basal body-cage complex.
    Hoey JG; Gavin RH
    J Cell Sci; 1992 Nov; 103 ( Pt 3)():629-41. PubMed ID: 1478961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global and local functions of the Fused kinase ortholog CdaH in intracellular patterning in Tetrahymena.
    Lee C; Maier W; Jiang YY; Nakano K; Lechtreck KF; Gaertig J
    J Cell Sci; 2024 Mar; 137(5):. PubMed ID: 37667859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Hippo Pathway Maintains the Equatorial Division Plane in the Ciliate
    Jiang YY; Maier W; Baumeister R; Minevich G; Joachimiak E; Ruan Z; Kannan N; Clarke D; Frankel J; Gaertig J
    Genetics; 2017 Jun; 206(2):873-888. PubMed ID: 28413159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acquisition of cell polarity during cell cycle and oral replacement in Tetrahymena.
    Kaczanowska J; Kaczanowski S; Kiersnowska M; Fabczak H; Tulodziecka K; Kaczanowski A
    Int J Dev Biol; 2008; 52(2-3):249-58. PubMed ID: 18311715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine oral filaments in Paramecium: a biochemical and immunological analysis.
    Clerot J; Iftode F; Budin K; Jeanmaire-Wolf R; Coffe G; Fleury-Aubusson A
    J Eukaryot Microbiol; 2001; 48(2):234-45. PubMed ID: 12095113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of supraoptimal temperatures on population growth and cortical patterning in Tetrahymena pyriformis and Tetrahymena thermophila: a comparison.
    Frankel J; Nelsen EM
    J Eukaryot Microbiol; 2001; 48(2):135-46. PubMed ID: 12095101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyc17, a meiosis-specific cyclin, is essential for anaphase initiation and chromosome segregation in Tetrahymena thermophila.
    Yan GX; Dang H; Tian M; Zhang J; Shodhan A; Ning YZ; Xiong J; Miao W
    Cell Cycle; 2016 Jul; 15(14):1855-64. PubMed ID: 27192402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of GFP-actin leads to failure of nuclear elongation and cytokinesis in Tetrahymena thermophila.
    Hosein RE; Williams SA; Haye K; Gavin RH
    J Eukaryot Microbiol; 2003; 50(6):403-8. PubMed ID: 14733431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two Antagonistic Hippo Signaling Circuits Set the Division Plane at the Medial Position in the Ciliate
    Jiang YY; Maier W; Baumeister R; Joachimiak E; Ruan Z; Kannan N; Clarke D; Louka P; Guha M; Frankel J; Gaertig J
    Genetics; 2019 Feb; 211(2):651-663. PubMed ID: 30593491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basal body duplication and maintenance require one member of the Tetrahymena thermophila centrin gene family.
    Stemm-Wolf AJ; Morgan G; Giddings TH; White EA; Marchione R; McDonald HB; Winey M
    Mol Biol Cell; 2005 Aug; 16(8):3606-19. PubMed ID: 15944224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The actin gene ACT1 is required for phagocytosis, motility, and cell separation of Tetrahymena thermophila.
    Williams NE; Tsao CC; Bowen J; Hehman GL; Williams RJ; Frankel J
    Eukaryot Cell; 2006 Mar; 5(3):555-67. PubMed ID: 16524910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron tomography and immuno-labeling of Tetrahymena thermophila basal bodies.
    Giddings TH; Meehl JB; Pearson CG; Winey M
    Methods Cell Biol; 2010; 96():117-41. PubMed ID: 20869521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.