These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 11401319)

  • 21. Direct effects of tumor necrosis factor alpha (TNF-alpha) on murine skeletal muscle cell lines. Bimodal effects on protein metabolism.
    Alvarez B; Quinn LS; Busquets S; López-Soriano FJ; Argilés JM
    Eur Cytokine Netw; 2001; 12(3):399-410. PubMed ID: 11566620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prolonged exposure to palmitate impairs fatty acid oxidation despite activation of AMP-activated protein kinase in skeletal muscle cells.
    Pimenta AS; Gaidhu MP; Habib S; So M; Fediuc S; Mirpourian M; Musheev M; Curi R; Ceddia RB
    J Cell Physiol; 2008 Nov; 217(2):478-85. PubMed ID: 18561258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of adrenaline and glucocorticoids on monocyte cAMP-specific phosphodiesterase (PDE4) in a monocytic cell line.
    Delgado M; Fernández-Alfonso MS; Fuentes A
    Arch Dermatol Res; 2002 Jul; 294(4):190-7. PubMed ID: 12111350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stearoyl-CoA desaturase-1 deficiency reduces ceramide synthesis by downregulating serine palmitoyltransferase and increasing beta-oxidation in skeletal muscle.
    Dobrzyn A; Dobrzyn P; Lee SH; Miyazaki M; Cohen P; Asilmaz E; Hardie DG; Friedman JM; Ntambi JM
    Am J Physiol Endocrinol Metab; 2005 Mar; 288(3):E599-607. PubMed ID: 15562249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dopamine stimulates 45Ca2+ uptake through cAMP, PLC/PKC, and MAPKs in renal proximal tubule cells.
    Han JY; Heo JS; Lee YJ; Lee JH; Taub M; Han HJ
    J Cell Physiol; 2007 May; 211(2):486-94. PubMed ID: 17167784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyclic adenosine 3',5'monophosphate/protein kinase A and mitogen-activated protein kinase 3/1 pathways are involved in adenylate cyclase-activating polypeptide 1-induced common alpha-glycoprotein subunit gene (Cga) expression in mouse pituitary gonadotroph LbetaT2 cells.
    Harada T; Kanasaki H; Mutiara S; Oride A; Miyazaki K
    Biol Reprod; 2007 Oct; 77(4):707-16. PubMed ID: 17596563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induction of beta3-adrenergic receptor functional expression following chronic stimulation with noradrenaline in neonatal rat cardiomyocytes.
    Germack R; Dickenson JM
    J Pharmacol Exp Ther; 2006 Jan; 316(1):392-402. PubMed ID: 16183708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of depletion of liver glycogen in cancer cachexia.
    Hirai K; Ishiko O; Tisdale M
    Biochem Biophys Res Commun; 1997 Dec; 241(1):49-52. PubMed ID: 9405232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and characterization of a lipid-mobilizing factor associated with cachexia-inducing tumors in mice and humans.
    McDevitt TM; Todorov PT; Beck SA; Khan SH; Tisdale MJ
    Cancer Res; 1995 Apr; 55(7):1458-63. PubMed ID: 7882353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induction of muscle protein degradation and weight loss by a tumor product.
    Todorov PT; McDevitt TM; Cariuk P; Coles B; Deacon M; Tisdale MJ
    Cancer Res; 1996 Mar; 56(6):1256-61. PubMed ID: 8640810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of a cachectic factor on carbohydrate metabolism and attenuation by eicosapentaenoic acid.
    Hussey HJ; Tisdale MJ
    Br J Cancer; 1999 Jun; 80(8):1231-5. PubMed ID: 10376976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification and characterization of a tumor lipid-mobilizing factor.
    Todorov PT; McDevitt TM; Meyer DJ; Ueyama H; Ohkubo I; Tisdale MJ
    Cancer Res; 1998 Jun; 58(11):2353-8. PubMed ID: 9622074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catabolism of adipose tissue by a tumour-produced lipid-mobilising factor.
    Khan S; Tisdale MJ
    Int J Cancer; 1999 Jan; 80(3):444-7. PubMed ID: 9935188
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of lipid-mobilising factor (LMF) in protecting tumour cells from oxidative damage.
    Sanders PM; Tisdale MJ
    Br J Cancer; 2004 Mar; 90(6):1274-8. PubMed ID: 15026812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cancer cachexia: impact, mechanisms and emerging treatments.
    Vaughan VC; Martin P; Lewandowski PA
    J Cachexia Sarcopenia Muscle; 2013 Jun; 4(2):95-109. PubMed ID: 23097000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physicochemical attack against solid tumors based on the reversal of direction of entropy flow: an attempt to introduce thermodynamics in anticancer therapy.
    Luo L; Molnar J; Ding H; Lv X; Spengler G
    Diagn Pathol; 2006 Nov; 1():43. PubMed ID: 17107607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cancer cachexia.
    Martignoni ME; Kunze P; Friess H
    Mol Cancer; 2003 Nov; 2():36. PubMed ID: 14613583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of a tumour-derived lipid-mobilising factor on glucose and lipid metabolism in vivo.
    Russell ST; Tisdale MJ
    Br J Cancer; 2002 Aug; 87(5):580-4. PubMed ID: 12189560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of a tumour-produced lipid-mobilizing factor on protein synthesis and degradation.
    Islam-Ali BS; Tisdale MJ
    Br J Cancer; 2001 Jun; 84(12):1648-55. PubMed ID: 11401319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological evaluation of a lipid-mobilizing factor isolated from the urine of cancer patients.
    Hirai K; Hussey HJ; Barber MD; Price SA; Tisdale MJ
    Cancer Res; 1998 Jun; 58(11):2359-65. PubMed ID: 9622075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.