BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

848 related articles for article (PubMed ID: 11401560)

  • 1. Catalytic reaction profile for alcohol oxidation by galactose oxidase.
    Whittaker MM; Whittaker JW
    Biochemistry; 2001 Jun; 40(24):7140-8. PubMed ID: 11401560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereoselective hydrogen abstraction by galactose oxidase.
    Minasian SG; Whittaker MM; Whittaker JW
    Biochemistry; 2004 Nov; 43(43):13683-93. PubMed ID: 15504031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition-state structure in the yeast alcohol dehydrogenase reaction: the magnitude of solvent and alpha-secondary hydrogen isotope effects.
    Welsh KM; Creighton DJ; Klinman JP
    Biochemistry; 1980 May; 19(10):2005-16. PubMed ID: 6990968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic insights from reactions between copper(II)-phenoxyl complexes and substrates with activated C-H bonds.
    Pratt RC; Stack TD
    Inorg Chem; 2005 Apr; 44(7):2367-75. PubMed ID: 15792472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galactose oxidase as a model for reactivity at a copper superoxide center.
    Humphreys KJ; Mirica LM; Wang Y; Klinman JP
    J Am Chem Soc; 2009 Apr; 131(13):4657-63. PubMed ID: 19290629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-activity relationships in the oxidation of para-substituted benzylamine analogues by recombinant human liver monoamine oxidase A.
    Miller JR; Edmondson DE
    Biochemistry; 1999 Oct; 38(41):13670-83. PubMed ID: 10521274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of active site histidines in the two half-reactions of the aryl-alcohol oxidase catalytic cycle.
    Hernández-Ortega A; Lucas F; Ferreira P; Medina M; Guallar V; Martínez AT
    Biochemistry; 2012 Aug; 51(33):6595-608. PubMed ID: 22834786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis.
    Mayr P; Nidetzky B
    Biochem J; 2002 Sep; 366(Pt 3):889-99. PubMed ID: 12003638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects.
    Klimacek M; Nidetzky B
    Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen bonding, solvent exchange, and coupled proton and electron transfer in the oxidation and reduction of redox-active tyrosine Y(Z) in Mn-depleted core complexes of photosystem II.
    Diner BA; Force DA; Randall DW; Britt RD
    Biochemistry; 1998 Dec; 37(51):17931-43. PubMed ID: 9922161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isotope effects and structure-reactivity correlations in the yeast alcohol dehydrogenase reaction. A study of the enzyme-catalyzed oxidation of aromatic alcohols.
    Klinman JP
    Biochemistry; 1976 May; 15(9):2018-26. PubMed ID: 773429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction and analysis of a semi-quantitative energy profile for the reaction catalyzed by the radical enzyme galactose oxidase.
    Wachter RM; Branchaud BP
    Biochim Biophys Acta; 1998 Apr; 1384(1):43-54. PubMed ID: 9602051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase.
    Ferreira P; Hernández-Ortega A; Lucas F; Carro J; Herguedas B; Borrelli KW; Guallar V; Martínez AT; Medina M
    FEBS J; 2015 Aug; 282(16):3091-106. PubMed ID: 25639975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the hydride reduction of an NAD(+) analogue by isopropyl alcohol in aqueous and acetonitrile solutions: solvent effects, deuterium isotope effects, and mechanism.
    Lu Y; Qu F; Zhao Y; Small AM; Bradshaw J; Moore B
    J Org Chem; 2009 Sep; 74(17):6503-10. PubMed ID: 19670893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclooxygenase reaction mechanism of prostaglandin H synthase from deuterium kinetic isotope effects.
    Wu G; Lü JM; van der Donk WA; Kulmacz RJ; Tsai AL
    J Inorg Biochem; 2011 Mar; 105(3):382-90. PubMed ID: 21394223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiols as mechanistic probes for catalysis by the free radical enzyme galactose oxidase.
    Wachter RM; Branchaud BP
    Biochemistry; 1996 Nov; 35(45):14425-35. PubMed ID: 8916929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical studies on the reaction mechanism of oxidation of primary alcohols by Zn/Cu(ii)-phenoxyl radical catalyst.
    Cheng L; Wang J; Wang M; Wu Z
    Dalton Trans; 2009 May; (17):3286-97. PubMed ID: 19421631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stacking tryptophan of galactose oxidase: a second-coordination sphere residue that has profound effects on tyrosyl radical behavior and enzyme catalysis.
    Rogers MS; Tyler EM; Akyumani N; Kurtis CR; Spooner RK; Deacon SE; Tamber S; Firbank SJ; Mahmoud K; Knowles PF; Phillips SE; McPherson MJ; Dooley DM
    Biochemistry; 2007 Apr; 46(15):4606-18. PubMed ID: 17385891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.