These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 11401826)
1. ClC-2 Cl- channels in human lung epithelia: activation by arachidonic acid, amidation, and acid-activated omeprazole. Cuppoletti J; Tewari KP; Sherry AM; Kupert EY; Malinowska DH Am J Physiol Cell Physiol; 2001 Jul; 281(1):C46-54. PubMed ID: 11401826 [TBL] [Abstract][Full Text] [Related]
2. Identification of the fatty acid activation site on human ClC-2. Cuppoletti J; Tewari KP; Chakrabarti J; Malinowska DH Am J Physiol Cell Physiol; 2017 Jun; 312(6):C707-C723. PubMed ID: 28424169 [TBL] [Abstract][Full Text] [Related]
3. Role of K(V)LQT1 in cyclic adenosine monophosphate-mediated Cl(-) secretion in human airway epithelia. Mall M; Wissner A; Schreiber R; Kuehr J; Seydewitz HH; Brandis M; Greger R; Kunzelmann K Am J Respir Cell Mol Biol; 2000 Sep; 23(3):283-9. PubMed ID: 10970817 [TBL] [Abstract][Full Text] [Related]
4. Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibrosis transmembrane conductance regulator, CFTR. MacVinish LJ; Cope G; Ropenga A; Cuthbert AW Br J Pharmacol; 2007 Apr; 150(8):1055-65. PubMed ID: 17339840 [TBL] [Abstract][Full Text] [Related]
5. SPI-0211 activates T84 cell chloride transport and recombinant human ClC-2 chloride currents. Cuppoletti J; Malinowska DH; Tewari KP; Li QJ; Sherry AM; Patchen ML; Ueno R Am J Physiol Cell Physiol; 2004 Nov; 287(5):C1173-83. PubMed ID: 15213059 [TBL] [Abstract][Full Text] [Related]
6. Chloride channel expression in cultured human fetal RPE cells: response to oxidative stress. Wills NK; Weng T; Mo L; Hellmich HL; Yu A; Wang T; Buchheit S; Godley BF Invest Ophthalmol Vis Sci; 2000 Dec; 41(13):4247-55. PubMed ID: 11095622 [TBL] [Abstract][Full Text] [Related]
7. Protein kinase A activation phosphorylates the rat ClC-2 Cl- channel but does not change activity. Park K; Begenisich T; Melvin JE J Membr Biol; 2001 Jul; 182(1):31-7. PubMed ID: 11426297 [TBL] [Abstract][Full Text] [Related]
8. Adenosine regulation of cystic fibrosis transmembrane conductance regulator through prostenoids in airway epithelia. Li Y; Wang W; Parker W; Clancy JP Am J Respir Cell Mol Biol; 2006 May; 34(5):600-8. PubMed ID: 16399952 [TBL] [Abstract][Full Text] [Related]
9. Modulation of Ca2+-activated Cl- secretion by basolateral K+ channels in human normal and cystic fibrosis airway epithelia. Mall M; Gonska T; Thomas J; Schreiber R; Seydewitz HH; Kuehr J; Brandis M; Kunzelmann K Pediatr Res; 2003 Apr; 53(4):608-18. PubMed ID: 12612194 [TBL] [Abstract][Full Text] [Related]
10. Cl- transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na+ channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC. Briel M; Greger R; Kunzelmann K J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):825-36. PubMed ID: 9518736 [TBL] [Abstract][Full Text] [Related]
11. Methadone but not morphine inhibits lubiprostone-stimulated Cl- currents in T84 intestinal cells and recombinant human ClC-2, but not CFTR Cl- currents. Cuppoletti J; Chakrabarti J; Tewari K; Malinowska DH Cell Biochem Biophys; 2013 May; 66(1):53-63. PubMed ID: 22918821 [TBL] [Abstract][Full Text] [Related]
12. Analysis of ClC-2 channels as an alternative pathway for chloride conduction in cystic fibrosis airway cells. Schwiebert EM; Cid-Soto LP; Stafford D; Carter M; Blaisdell CJ; Zeitlin PL; Guggino WB; Cutting GR Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3879-84. PubMed ID: 9520461 [TBL] [Abstract][Full Text] [Related]
13. CFTR in Calu-3 human airway cells: channel properties and role in cAMP-activated Cl- conductance. Haws C; Finkbeiner WE; Widdicombe JH; Wine JJ Am J Physiol; 1994 May; 266(5 Pt 1):L502-12. PubMed ID: 7515579 [TBL] [Abstract][Full Text] [Related]
14. The chloride channel ClC-2 contributes to the inwardly rectifying Cl- conductance in cultured porcine choroid plexus epithelial cells. Kajita H; Omori K; Matsuda H J Physiol; 2000 Mar; 523 Pt 2(Pt 2):313-24. PubMed ID: 10699077 [TBL] [Abstract][Full Text] [Related]
15. PKA and arachidonic acid activation of human recombinant ClC-2 chloride channels. Tewari KP; Malinowska DH; Sherry AM; Cuppoletti J Am J Physiol Cell Physiol; 2000 Jul; 279(1):C40-50. PubMed ID: 10898715 [TBL] [Abstract][Full Text] [Related]
16. Additional disruption of the ClC-2 Cl(-) channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models. Zdebik AA; Cuffe JE; Bertog M; Korbmacher C; Jentsch TJ J Biol Chem; 2004 May; 279(21):22276-83. PubMed ID: 15007059 [TBL] [Abstract][Full Text] [Related]