BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11401855)

  • 1. Functional aspects of creatine kinase isoenzymes in endothelial cells.
    Decking UK; Alves C; Wallimann T; Wyss M; Schrader J
    Am J Physiol Cell Physiol; 2001 Jul; 281(1):C320-8. PubMed ID: 11401855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opposite transitions of chick brain catalytically active cytosolic creatine kinase isoenzymes during development.
    Ramírez O; Jiménez E
    Int J Dev Neurosci; 2000 Dec; 18(8):815-23. PubMed ID: 11154851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional maturation of creatine kinase in rat brain.
    Holtzman D; Tsuji M; Wallimann T; Hemmer W
    Dev Neurosci; 1993; 15(3-5):261-70. PubMed ID: 7805578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sexual dimorphism in rat cerebrum and cerebellum: different patterns of catalytically active creatine kinase isoenzymes during postnatal development and aging.
    Ramírez O; Jiménez E
    Int J Dev Neurosci; 2002 Dec; 20(8):627-39. PubMed ID: 12526893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High content of creatine kinase in chicken retina: compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells.
    Wallimann T; Wegmann G; Moser H; Huber R; Eppenberger HM
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3816-9. PubMed ID: 3520556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of creatine kinase isoenzymes in the guinea-pig. Presence of mitochondrial creatine kinase in smooth muscle.
    Ishida Y; Wyss M; Hemmer W; Wallimann T
    FEBS Lett; 1991 May; 283(1):37-43. PubMed ID: 2037070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 'Hot spots' of creatine kinase localization in brain: cerebellum, hippocampus and choroid plexus.
    Kaldis P; Hemmer W; Zanolla E; Holtzman D; Wallimann T
    Dev Neurosci; 1996; 18(5-6):542-54. PubMed ID: 8940630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain creatine kinase and creatine transporter proteins in normal and creatine-treated rabbit pups.
    Kekelidze T; Khait I; Togliatti A; Holtzman D
    Dev Neurosci; 2000; 22(5-6):437-43. PubMed ID: 11111160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of phytoestrogens on DNA synthesis and creatine kinase activity in vascular cells.
    Somjen D; Knoll E; Kohen F; Stern N
    Am J Hypertens; 2001 Dec; 14(12):1256-62. PubMed ID: 11775135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adult rat cardiomyocytes cultured in creatine-deficient medium display large mitochondria with paracrystalline inclusions, enriched for creatine kinase.
    Eppenberger-Eberhardt M; Riesinger I; Messerli M; Schwarb P; Müller M; Eppenberger HM; Wallimann T
    J Cell Biol; 1991 Apr; 113(2):289-302. PubMed ID: 1849138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing the functional properties of the creatine kinase system with multiscale 'sloppy' modeling.
    Hettling H; van Beek JH
    PLoS Comput Biol; 2011 Aug; 7(8):e1002130. PubMed ID: 21912519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compartmentation of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in neurons: evidence for a creatine phosphate energy shuttle in adult rat brain.
    Friedman DL; Roberts R
    J Comp Neurol; 1994 May; 343(3):500-11. PubMed ID: 7517967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of creatine kinase gene expression in rat heart post-myocardial infarction.
    Neubauer S; Frank M; Hu K; Remkes H; Laser A; Horn M; Ertl G; Lohse MJ
    J Mol Cell Cardiol; 1998 Apr; 30(4):803-10. PubMed ID: 9602429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis.
    Tachikawa M; Fukaya M; Terasaki T; Ohtsuki S; Watanabe M
    Eur J Neurosci; 2004 Jul; 20(1):144-60. PubMed ID: 15245487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility.
    Jost CR; Van Der Zee CE; In 't Zandt HJ; Oerlemans F; Verheij M; Streijger F; Fransen J; Heerschap A; Cools AR; Wieringa B
    Eur J Neurosci; 2002 May; 15(10):1692-706. PubMed ID: 12059977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Location and regulation of octameric mitochondrial creatine kinase in the contact sites.
    Kottke M; Adams V; Wallimann T; Nalam VK; Brdiczka D
    Biochim Biophys Acta; 1991 Jan; 1061(2):215-25. PubMed ID: 1998693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex differences in rat heart. Different patterns of catalytically active creatine kinase isoenzymes.
    Ramírez OC; Jiménez E
    Arch Inst Cardiol Mex; 2000; 70(5):438-47. PubMed ID: 11534094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms.
    in 't Zandt HJ; de Groof AJ; Renema WK; Oerlemans FT; Klomp DW; Wieringa B; Heerschap A
    J Physiol; 2003 May; 548(Pt 3):847-58. PubMed ID: 12640020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-2-hydroxyglutaric acid inhibits mitochondrial creatine kinase activity from cerebellum of developing rats.
    da Silva CG; Bueno AR; Schuck PF; Leipnitz G; Ribeiro CA; Wannmacher CM; Wyse AT; Wajner M
    Int J Dev Neurosci; 2003 Jun; 21(4):217-24. PubMed ID: 12781789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional coupling of creatine kinases in muscles: species and tissue specificity.
    Ventura-Clapier R; Kuznetsov A; Veksler V; Boehm E; Anflous K
    Mol Cell Biochem; 1998 Jul; 184(1-2):231-47. PubMed ID: 9746324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.