These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 1140252)

  • 1. Resting membrane potential of the stria cells of the guinea-pig.
    Chou JT; Okumura H; Vosteen K
    Experientia; 1975 May; 31(5):554-6. PubMed ID: 1140252
    [No Abstract]   [Full Text] [Related]  

  • 2. Ion transport in the endolymphatic space.
    Morgenstern C; Amano H; Orsulakova A
    Am J Otolaryngol; 1982; 3(5):323-7. PubMed ID: 6293327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Movement of monovalent ions across the membranes of marginal cells of the stria vascularis in the guinea pig cochlea.
    Komune S; Nakagawa T; Hisashi K; Kimituki T; Uemura T
    ORL J Otorhinolaryngol Relat Spec; 1993; 55(2):61-7. PubMed ID: 8383309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normal and abnormal physiology of the inner ear.
    Johnstone B
    Otolaryngol Clin North Am; 1975 Jun; 8(2):271-81. PubMed ID: 1153196
    [No Abstract]   [Full Text] [Related]  

  • 5. The unique ion permeability profile of cochlear fibrocytes and its contribution to establishing their positive resting membrane potential.
    Yoshida T; Nin F; Murakami S; Ogata G; Uetsuka S; Choi S; Nakagawa T; Inohara H; Komune S; Kurachi Y; Hibino H
    Pflugers Arch; 2016 Sep; 468(9):1609-19. PubMed ID: 27344659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of high-frequency sound on the guinea pig cochlea. Electrophysiological study using cochlear microphonics, action and endocochlear potential.
    Ishida A; Sugisawa T; Yamamura K
    ORL J Otorhinolaryngol Relat Spec; 1993; 55(6):332-6. PubMed ID: 8265117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resting membrane potential and ionic distribution in fast- and slow-twitch mammalian muscle.
    Campion DS
    J Clin Invest; 1974 Sep; 54(3):514-8. PubMed ID: 4854140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of 4 kHz tone exposure on the guinea pig inner ear: relation in the change of cochlear microphonics, action potential, electrochemical potential and K+ ion concentration induced by noise exposure.
    Sugisawa T; Nemoto R; Inada N; Yamamura K; Ishida A
    ORL J Otorhinolaryngol Relat Spec; 1994; 56(5):263-8. PubMed ID: 7970610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of cetrimide and potassium bromate on the potassium ion concentration in the inner ear fluid of the guinea-pig.
    Morizono T; Ikeda K
    Physiol Bohemoslov; 1988; 37(3):241-7. PubMed ID: 2975792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrinolytic activity in the inner ear of human beings and guinea pigs.
    Inoue S; Tanaka K
    Otolaryngol Head Neck Surg; 1982; 90(6):801-7. PubMed ID: 10994433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of monovalent ions in the endolymph in mouse cochlea.
    Yamasaki M; Komune S; Shimozono M; Matsuda K; Haruta A
    ORL J Otorhinolaryngol Relat Spec; 2000; 62(5):241-6. PubMed ID: 10965258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production and role of inner ear fluid.
    Sellick PM; Johnstone BM
    Prog Neurobiol; 1975; 5(4):337-62. PubMed ID: 830088
    [No Abstract]   [Full Text] [Related]  

  • 13. The nature of the negative endocochlear potentials produced by anoxia and ethacrynic acid in the rat and guinea-pig.
    Bosher SK
    J Physiol; 1979 Aug; 293():329-45. PubMed ID: 41092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of high intensity impulse noise on ionic concentrations in cochlear endolymph of the guinea pig.
    Li W; Zhao L; Jiang S; Gu R
    Chin Med J (Engl); 1997 Nov; 110(11):883-6. PubMed ID: 9772424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of furosemide on the ampullar endolymphatic potential and endolymphatic Ca2+ activity].
    He D; Zhou W; Chen Z
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 1997 Sep; 11(9):392-5. PubMed ID: 10323004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inner ear pressure changes modify ADH secretion in freely moving guinea pig.
    Podda MV; Ivaldi R; Faedda R; Cossellu S; Deriu F; Tolu E; Montella A; Satta A
    J Nephrol; 1999; 12(1):47-50. PubMed ID: 10203004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological role of L-type Ca2+ channels in marginal cells in the stria vascularis of guinea pigs.
    Inui T; Mori Y; Watanabe M; Takamaki A; Yamaji J; Sohma Y; Yoshida R; Takenaka H; Kubota T
    J Physiol Sci; 2007 Oct; 57(5):287-98. PubMed ID: 17963592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemistry of the inner ear.
    Thalmann R; Marcus DC; Thalmann I
    Birth Defects Orig Artic Ser; 1980; 16(4):83-105. PubMed ID: 6263379
    [No Abstract]   [Full Text] [Related]  

  • 19. Perilymphatic and endolymphatic pressure in the normal guinea pig.
    Warmerdam TJ; Schröder FH; Wit HP; Albers FW
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(2):71-3. PubMed ID: 10095195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of glycerol on inner ear fluid electrolytes and osmolalities in guinea pigs.
    Ueda H; Muratsuka Y; Konishi T
    Ann Otol Rhinol Laryngol; 1987; 96(4):461-7. PubMed ID: 3619293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.