BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11402877)

  • 1. Neurotrophic factors and gene therapy in spinal cord injury.
    Lacroix S; Tuszynski MH
    Neurorehabil Neural Repair; 2000; 14(4):265-75. PubMed ID: 11402877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord.
    Hendriks WT; Ruitenberg MJ; Blits B; Boer GJ; Verhaagen J
    Prog Brain Res; 2004; 146():451-76. PubMed ID: 14699980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury.
    Jones LL; Oudega M; Bunge MB; Tuszynski MH
    J Physiol; 2001 May; 533(Pt 1):83-9. PubMed ID: 11351016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [FGF-2-treatment improves locomotor function via axonal regeneration in the transected rat spinal cord].
    Furukawa S; Furukawa Y
    Brain Nerve; 2007 Dec; 59(12):1333-9. PubMed ID: 18095482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maintaining the neuronal phenotype after injury in the adult CNS. Neurotrophic factors, axonal growth substrates, and gene therapy.
    Tuszynski MH; Gage FH
    Mol Neurobiol; 1995; 10(2-3):151-67. PubMed ID: 7576305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair.
    Blesch A; Lu P; Tuszynski MH
    Brain Res Bull; 2002 Apr; 57(6):833-8. PubMed ID: 12031281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotrophins: potential therapeutic tools for the treatment of spinal cord injury.
    Hollis ER; Tuszynski MH
    Neurotherapeutics; 2011 Oct; 8(4):694-703. PubMed ID: 21904786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat.
    Bregman BS; McAtee M; Dai HN; Kuhn PL
    Exp Neurol; 1997 Dec; 148(2):475-94. PubMed ID: 9417827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delayed intervention with transplants and neurotrophic factors supports recovery of forelimb function after cervical spinal cord injury in adult rats.
    Lynskey JV; Sandhu FA; Dai HN; McAtee M; Slotkin JR; MacArthur L; Bregman BS
    J Neurotrauma; 2006 May; 23(5):617-34. PubMed ID: 16689666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological, cell, and gene therapy strategies to promote spinal cord regeneration.
    Blits B; Boer GJ; Verhaagen J
    Cell Transplant; 2002; 11(6):593-613. PubMed ID: 12428749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [An update of repairing spinal cord injury by olfactory ensheathing cells].
    Hu ZJ; Ma YH
    Zhongguo Gu Shang; 2009 Jan; 22(1):68-71. PubMed ID: 19203056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene therapy, neurotrophic factors and spinal cord regeneration.
    Blesch A; Fischer I; Tuszynski MH
    Handb Clin Neurol; 2012; 109():563-74. PubMed ID: 23098737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Schwann cell p75NTR prevents spontaneous sensory reinnervation of the adult spinal cord.
    Scott AL; Ramer MS
    Brain; 2010 Feb; 133(Pt 2):421-32. PubMed ID: 20047901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury.
    Zhou L; Shine HD
    J Neurosci Res; 2003 Oct; 74(2):221-6. PubMed ID: 14515351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurotrophic factors in central nervous system trauma.
    Mocchetti I; Wrathall JR
    J Neurotrauma; 1995 Oct; 12(5):853-70. PubMed ID: 8594213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Olfactory ensheathing glia: their contribution to primary olfactory nervous system regeneration and their regenerative potential following transplantation into the injured spinal cord.
    Franssen EH; de Bree FM; Verhaagen J
    Brain Res Rev; 2007 Nov; 56(1):236-58. PubMed ID: 17884174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fetal spinal cord transplants and exogenous neurotrophic support enhance c-Jun expression in mature axotomized neurons after spinal cord injury.
    Broude E; McAtee M; Kelley MS; Bregman BS
    Exp Neurol; 1999 Jan; 155(1):65-78. PubMed ID: 9918706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biopolymers and biodegradable smart implants for tissue regeneration after spinal cord injury.
    Novikova LN; Novikov LN; Kellerth JO
    Curr Opin Neurol; 2003 Dec; 16(6):711-5. PubMed ID: 14624081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Olfactory ensheathing glia transplantation: a therapy to promote repair in the mammalian central nervous system.
    Santos-Benito FF; Ramón-Cueto A
    Anat Rec B New Anat; 2003 Mar; 271(1):77-85. PubMed ID: 12619089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential role of growth factors in the management of spinal cord injury.
    Awad BI; Carmody MA; Steinmetz MP
    World Neurosurg; 2015 Jan; 83(1):120-31. PubMed ID: 23334003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.