BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 11403235)

  • 1. Degradation behavior of composite pins made of tricalcium phosphate and poly(L,DL-lactide).
    Ignatius AA; Augat P; Claes LE
    J Biomater Sci Polym Ed; 2001; 12(2):185-94. PubMed ID: 11403235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery.
    Ignatius AA; Ohnmacht M; Claes LE; Kreidler J; Palm F
    J Biomed Mater Res; 2001; 58(5):564-9. PubMed ID: 11505432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New bioresorbable pin for the reduction of small bony fragments: design, mechanical properties and in vitro degradation.
    Claes LE; Ignatius AA; Rehm KE; Scholz C
    Biomaterials; 1996 Aug; 17(16):1621-6. PubMed ID: 8842367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation.
    Lin FH; Chen TM; Lin CP; Lee CJ
    Artif Organs; 1999 Feb; 23(2):186-94. PubMed ID: 10027889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of poly-L/DL-lactide versus TCP composite pins: a three-year animal study.
    Prokop A; Höfl A; Hellmich M; Jubel A; Andermahr J; Emil Rehm K; Hahn U
    J Biomed Mater Res B Appl Biomater; 2005 Nov; 75(2):304-10. PubMed ID: 16037964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positional stability of polylactide pins with various surface textures in sheep tibia.
    Mainil-Varlet P; Cordey J; Gogolewski S
    J Biomed Mater Res; 1997 Mar; 34(3):351-9. PubMed ID: 9086405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [In vivo degradation and tissue compatibility of poly-L-lactide/beta-tricalcium phosphate composite rods for internal fixation of bone fractures].
    Li X; Zou J; Zhu G; Qi X; Pu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):81-6. PubMed ID: 17333897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The preliminary study and tentative animal study on the sintered PDLLA/TCP composites as bone fracture internal fixation.
    Lin FH; Chen TM; Lee CJ
    Biomed Sci Instrum; 1997; 34():76-81. PubMed ID: 9603016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hydrolysis on mechanical properties of tricalcium phosphate/poly-L: -lactide composites.
    Kobayashi S; Sakamoto K
    J Mater Sci Mater Med; 2009 Jan; 20(1):379-86. PubMed ID: 18807265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative radiological assessment of polylactide pins over 3 years in vivo.
    Prokop A; Jubel A; Hahn U; Dietershagen M; Bleidistel M; Peters C; Höfl A; Rehm KE
    Biomaterials; 2005 Jul; 26(19):4129-38. PubMed ID: 15664640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composites made of rapidly resorbable ceramics and poly(lactide) show adequate mechanical properties for use as bone substitute materials.
    Ignatius AA; Wolf S; Augat P; Claes LE
    J Biomed Mater Res; 2001 Oct; 57(1):126-31. PubMed ID: 11416859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo investigations on composites made of resorbable ceramics and poly(lactide) used as bone graft substitutes.
    Ignatius AA; Betz O; Augat P; Claes LE
    J Biomed Mater Res; 2001; 58(6):701-9. PubMed ID: 11745524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fixation of distal femoral osteotomies with self-reinforced poly(L/DL)lactide 70:30 and self-reinforced poly(L/DL)lactide 70: 30/bioactive glass composite rods. an experimental study on rabbits.
    Pyhältö T; Lapinsuo M; Pätiälä H; Niiranen H; Törmälä P; Rokkanen P
    J Biomater Sci Polym Ed; 2005; 16(6):725-44. PubMed ID: 16028593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of strain rate on the mechanical properties of tricalcium phosphate/poly(L: -lactide) composites.
    Yamadi S; Kobayashi S
    J Mater Sci Mater Med; 2009 Jan; 20(1):67-74. PubMed ID: 18704650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A self-reinforcing biodegradable implant made of poly(ɛ-caprolactone)/calcium phosphate ceramic composite for craniomaxillofacial fracture fixation.
    Wu CC; Tsai YF; Hsu LH; Chen JP; Sumi S; Yang KC
    J Craniomaxillofac Surg; 2016 Sep; 44(9):1333-41. PubMed ID: 27527677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of poly(D,L)lactide implants with or without addition of calciumphosphates in vivo.
    Heidemann W; Jeschkeit S; Ruffieux K; Fischer JH; Wagner M; Krüger G; Wintermantel E; Gerlach KL
    Biomaterials; 2001 Sep; 22(17):2371-81. PubMed ID: 11511034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesion and proliferation of human osteoblast-like cells on different biodegradable implant materials used for graft fixation in ACL-reconstruction.
    Bernstein A; Tecklenburg K; Südkamp P; Mayr HO
    Arch Orthop Trauma Surg; 2012 Nov; 132(11):1637-45. PubMed ID: 22864871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L
    Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Preparation and degradation of poly(DL-lactide)/calcium phosphates porous scaffolds].
    Quan D; Liao K; Luo B; Lu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):174-7. PubMed ID: 15143533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of composite materials composed of tricalcium phosphate and a new type of block polyester containing a poly(L-lactic acid) segment.
    Imai Y; Nagai M; Watanabe M
    J Biomater Sci Polym Ed; 1999; 10(4):421-32. PubMed ID: 10227465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.