These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 1140337)

  • 21. A low-temperature chamber for electrophysiological studies.
    Allison T; Goff WR; Fisher TC
    Physiol Behav; 1970 Jan; 5(1):127-8. PubMed ID: 5538397
    [No Abstract]   [Full Text] [Related]  

  • 22. Remote switching of temperature, gaseous, and aqueous phase in a low-volume interface chamber for brain slices.
    Wölfer J; Speckmann EJ; Wassmann H; Gorji A; Greiner C
    J Neurosci Methods; 2010 Oct; 193(1):77-81. PubMed ID: 20800618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Improved Moist Chamber Slide for Use in Micromanipulation.
    Richter KM
    Science; 1948 Aug; 108(2799):192. PubMed ID: 17821154
    [No Abstract]   [Full Text] [Related]  

  • 24. Technical contribution. A simple rapid method for preparing parallel micropipette electrodes.
    Oliver AP
    Electroencephalogr Clin Neurophysiol; 1971 Sep; 31(3):284-6. PubMed ID: 4105878
    [No Abstract]   [Full Text] [Related]  

  • 25. [Micromanipulation of human gametes within the scope of assisted reproduction].
    Strohmer H; Obruca A; Feichtinger W
    Wien Klin Wochenschr; 1993; 105(24):704-7. PubMed ID: 8116305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing DNA helicase kinetics with temperature-controlled magnetic tweezers.
    Gollnick B; Carrasco C; Zuttion F; Gilhooly NS; Dillingham MS; Moreno-Herrero F
    Small; 2015 Mar; 11(11):1273-84. PubMed ID: 25400244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [In vitro fertilization in male subfertility--micromanipulation and special techniques for semen preparation].
    Obruca A; Strohmer H; Krampl E; Radner K; Feichtinger W
    Geburtshilfe Frauenheilkd; 1994 Oct; 54(10):574-9. PubMed ID: 8001755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Computer-controlled frequency synthesizer for electrophysiological experiments (author's transl)].
    Hayashi H
    Nihon Seirigaku Zasshi; 1975 Jun; 37(7):137-8. PubMed ID: 1238558
    [No Abstract]   [Full Text] [Related]  

  • 29. An instrument for environmental control of vapor pressure and temperature for tensile creep and other mechanical property measurements.
    Majsztrik PW; Bocarsly AB; Benziger JB
    Rev Sci Instrum; 2007 Oct; 78(10):103904. PubMed ID: 17979432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A versatile high-pressure chamber for electrophysiological measurements.
    Parmentier JL; Shrivastav BB; Bennett PB
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Mar; 48(3):562-6. PubMed ID: 7372528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Levitation and movement of human tumor cells using a printed circuit board device based on software-controlled dielectrophoresis.
    Altomare L; Borgatti M; Medoro G; Manaresi N; Tartagni M; Guerrieri R; Gambari R
    Biotechnol Bioeng; 2003 May; 82(4):474-9. PubMed ID: 12632404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Apparatus for the micromanipulation of small bacteria.
    Isaac L; Ware GC; Leonard PG
    Lab Pract; 1975 Nov; 24(11):744-6. PubMed ID: 1107659
    [No Abstract]   [Full Text] [Related]  

  • 33. Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells.
    Harsono MS; Zhu Q; Shi LZ; Duquette M; Berns MW
    J Biophotonics; 2013 Feb; 6(2):197-204. PubMed ID: 22517735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Programmable assembly of heterogeneous microparts by an untethered mobile capillary microgripper.
    Giltinan J; Diller E; Sitti M
    Lab Chip; 2016 Nov; 16(22):4445-4457. PubMed ID: 27766322
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Connection between spike discharges and evoked potentials in rabbit visual cortex.
    Polyanskii VB
    Fed Proc Transl Suppl; 1966; 25(5):753-7. PubMed ID: 5223553
    [No Abstract]   [Full Text] [Related]  

  • 36. A hydraulic microdrive for the remote control of micromanipulation: economically constructed.
    Russell RJ
    Biomed Eng; 1973 Jan; 8(1):14-5 passim. PubMed ID: 4685286
    [No Abstract]   [Full Text] [Related]  

  • 37. Flow-assisted single-beam optothermal manipulation of microparticles.
    Liu Y; Poon AW
    Opt Express; 2010 Aug; 18(17):18483-91. PubMed ID: 20721243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [An automatically controlled micromanipulator for seeking out neurons when working with non-immobilized animals].
    Shul'gina GI; D'iakonov VL; Parfenov NN; Rybalko AI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1975; 25(4):879-91. PubMed ID: 1210740
    [No Abstract]   [Full Text] [Related]  

  • 39. A multi-walled carbon nanotube-aluminum bimorph nanoactuator.
    Sul O; Yang EH
    Nanotechnology; 2009 Mar; 20(9):095502. PubMed ID: 19417489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterisation of bacterial adhesion and removal in a flow chamber by micromanipulation measurements.
    Garrett TR; Bhakoo M; Zhang Z
    Biotechnol Lett; 2008 Mar; 30(3):427-33. PubMed ID: 17972015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.