These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 11403662)

  • 1. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics.
    Apel J; Paul R; Klaus S; Siess T; Reul H
    Artif Organs; 2001 May; 25(5):341-7. PubMed ID: 11403662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational fluid dynamics analysis of an intra-cardiac axial flow pump.
    Mitoh A; Yano T; Sekine K; Mitamura Y; Okamoto E; Kim DW; Yozu R; Kawada S
    Artif Organs; 2003 Jan; 27(1):34-40. PubMed ID: 12534711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis.
    Yano T; Sekine K; Mitoh A; Mitamura Y; Okamoto E; Kim DW; Nishimura I; Murabayashi S; Yozu R
    Artif Organs; 2003 Oct; 27(10):920-5. PubMed ID: 14616536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Investigation of computational fluid dynamics application in blood pumps].
    Wang F; Qian K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1033-6. PubMed ID: 17121348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood compatible design of a pulsatile blood pump using computational fluid dynamics and computer-aided design and manufacturing technology.
    Okamoto E; Hashimoto T; Inoue T; Mitamura Y
    Artif Organs; 2003 Jan; 27(1):61-7. PubMed ID: 12534714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research on flow characteristics in a non-blade centrifugal blood pump based on CFD technology].
    Cheng Y; Luo B; Wu W; Jiang L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Oct; 27(5):1133-7. PubMed ID: 21089685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design optimization of blood shearing instrument by computational fluid dynamics.
    Wu J; Antaki JF; Snyder TA; Wagner WR; Borovetz HS; Paden BE
    Artif Organs; 2005 Jun; 29(6):482-9. PubMed ID: 15926986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamics investigation of a centrifugal blood pump.
    Legendre D; Antunes P; Bock E; Andrade A; Biscegli JF; Ortiz JP
    Artif Organs; 2008 Apr; 32(4):342-8. PubMed ID: 18370951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump.
    Arvand A; Hormes M; Reul H
    Artif Organs; 2005 Jul; 29(7):531-40. PubMed ID: 15982281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear stress evaluation on blood cells using computational fluid dynamics.
    Mitoh A; Suebe Y; Kashima T; Koyabu E; Sobu E; Okamoto E; Mitamura Y; Nishimura I
    Biomed Mater Eng; 2020; 31(3):169-178. PubMed ID: 32597794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of the BP-80 blood pump.
    Watanabe N; Karsak O; Neudel F; Kink T; Apel J; Fujimoto T; Reul H; Takatani S
    Artif Organs; 2001 Sep; 25(9):733-9. PubMed ID: 11722352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational flow visualization in vibrating flow pump type artificial heart by unstructured grid.
    Kato T; Kawano S; Nakahashi K; Yambe T; Nitta S; Hashimoto H
    Artif Organs; 2003 Jan; 27(1):41-8. PubMed ID: 12534712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models.
    Hariharan P; D'Souza G; Horner M; Malinauskas RA; Myers MR
    J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26065371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tensor-based measure for estimating blood damage.
    Arora D; Behr M; Pasquali M
    Artif Organs; 2004 Nov; 28(11):1002-15. PubMed ID: 15504116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump.
    Zhang J; Gellman B; Koert A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2006 Mar; 30(3):168-77. PubMed ID: 16480391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.
    Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U
    Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational fluid dynamic analyses to establish design process of centrifugal blood pumps.
    Miyazoe Y; Sawairi T; Ito K; Konishi Y; Yamane T; Nishida M; Masuzawa T; Takiura K; Taenaka Y
    Artif Organs; 1998 May; 22(5):381-5. PubMed ID: 9609345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemolysis in a laminar flow-through Couette shearing device: an experimental study.
    Boehning F; Mejia T; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2014 Sep; 38(9):761-5. PubMed ID: 24867102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational fluid dynamics as a development tool for rotary blood pumps.
    Burgreen GW; Antaki JF; Wu ZJ; Holmes AJ
    Artif Organs; 2001 May; 25(5):336-40. PubMed ID: 11403661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamics prediction of blood damage in a centrifugal pump.
    Song X; Throckmorton AL; Wood HG; Antaki JF; Olsen DB
    Artif Organs; 2003 Oct; 27(10):938-41. PubMed ID: 14616540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.