BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 11404282)

  • 21. Nitric oxide originating from NOS1 controls oxygen utilization and electrolyte transport efficiency in the diabetic kidney.
    Palm F; Fasching A; Hansell P; Källskog O
    Am J Physiol Renal Physiol; 2010 Feb; 298(2):F416-20. PubMed ID: 19923416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of renal medullary blood flow in the development of L-NAME hypertension in rats.
    Nakanishi K; Mattson DL; Cowley AW
    Am J Physiol; 1995 Feb; 268(2 Pt 2):R317-23. PubMed ID: 7864223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Renal hemodynamic responses to intrarenal infusion of acetylcholine: comparison with effects of PGE2 and NO donor.
    Badzyńska B; Sadowski J
    Kidney Int; 2006 May; 69(10):1774-9. PubMed ID: 16572111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Renal cortical nitric oxide synthase activity during maturational growth in the rat.
    Ishii N; Fujiwara K; Lane PH; Patel KP; Carmines PK
    Pediatr Nephrol; 2002 Aug; 17(8):591-6. PubMed ID: 12185463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roles of nitric oxide and oxidative stress in the regulation of blood pressure and renal function in prehypertensive Ren-2 transgenic rats.
    Vanecková I; Kramer HJ; Novotná J; Kazdová L; Opocenský M; Bader M; Ganten D; Cervenka L
    Kidney Blood Press Res; 2005; 28(2):117-26. PubMed ID: 15795515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of renal medullary circulation on arterial pressure.
    Cowley AW; Roman RJ; Fenoy FJ; Mattson DL
    J Hypertens Suppl; 1992 Dec; 10(7):S187-93. PubMed ID: 1291653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism underlying diuretic effect of L-NAME at a subpressor dose.
    Liang M; Berndt TJ; Knox FG
    Am J Physiol Renal Physiol; 2001 Sep; 281(3):F414-9. PubMed ID: 11502590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Angiotensin II and nitric oxide in neural control of intrarenal blood flow.
    Rajapakse NW; Sampson AK; Eppel GA; Evans RG
    Am J Physiol Regul Integr Comp Physiol; 2005 Sep; 289(3):R745-54. PubMed ID: 15890788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Renal medullary nitric oxide deficit of Dahl S rats enhances hypertensive actions of angiotensin II.
    Szentiványi M; Zou AP; Mattson DL; Soares P; Moreno C; Roman RJ; Cowley AW
    Am J Physiol Regul Integr Comp Physiol; 2002 Jul; 283(1):R266-72. PubMed ID: 12069953
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitric Oxide Synthase Inhibition Induces Renal Medullary Hypoxia in Conscious Rats.
    Emans TW; Janssen BJ; Joles JA; Krediet CTP
    J Am Heart Assoc; 2018 Aug; 7(15):e009501. PubMed ID: 30371226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression and actions of heme oxygenase in the renal medulla of rats.
    Zou AP; Billington H; Su N; Cowley AW
    Hypertension; 2000 Jan; 35(1 Pt 2):342-7. PubMed ID: 10642322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of NO and COX pathways in mediation of adenosine A1 receptor-induced renal vasoconstriction.
    Walkowska A; Dobrowolski L; Kompanowska-Jezierska E; Sadowski J
    Exp Biol Med (Maywood); 2007 May; 232(5):690-4. PubMed ID: 17463166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclooxygenase-2 products compensate for inhibition of nitric oxide regulation of renal perfusion.
    Beierwaltes WH
    Am J Physiol Renal Physiol; 2002 Jul; 283(1):F68-72. PubMed ID: 12060588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inducible nitric oxide synthase and blood pressure.
    Mattson DL; Maeda CY; Bachman TD; Cowley AW
    Hypertension; 1998 Jan; 31(1):15-20. PubMed ID: 9449384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Renal hemodynamic interactions of nitric oxide and angiotensin II].
    Nakanishi K; Hamada K; Hara N; Nagai Y; Nakamura K
    Nihon Jinzo Gakkai Shi; 1998 Nov; 40(8):567-72. PubMed ID: 9893455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of nitric oxide in the control of the renal medullary circulation.
    Mattson DL; Lu S; Cowley AW
    Clin Exp Pharmacol Physiol; 1997 Aug; 24(8):587-90. PubMed ID: 9269532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Salt-sensitive hypertension in conscious rats induced by chronic nitric oxide blockade.
    Nakanishi K; Hara N; Nagai Y
    Am J Hypertens; 2002 Feb; 15(2 Pt 1):150-6. PubMed ID: 11863250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitric oxide regulation of TP receptor-mediated pulmonary vasoconstriction in the anesthetized, open-chest rat.
    Valentin JP; Bessac AM; Maffre M; John GW
    Eur J Pharmacol; 1996 Dec; 317(2-3):335-42. PubMed ID: 8997619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of renal nerve stimulation on intrarenal blood flow in rats with intact or inactivated NO synthases.
    Walkowska A; Badzyńska B; Kompanowska-Jezierska E; Johns EJ; Sadowski J
    Acta Physiol Scand; 2005 Jan; 183(1):99-105. PubMed ID: 15654923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of arterial blood pressure and renal sodium excretion by nitric oxide synthase in the renal medulla.
    Mattson DL; Wu F
    Acta Physiol Scand; 2000 Jan; 168(1):149-54. PubMed ID: 10691793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.