These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11404292)

  • 1. Effect of a myocardial volume overload on lactate transport in skeletal muscle sarcolemmal vesicles.
    Aschenbach WG; Brower GL; Talmadge RJ; Dobson JL; Gladden LB
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R176-86. PubMed ID: 11404292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate uptake by skeletal muscle sarcolemmal vesicles decreases after 4 wk of hindlimb unweighting in rats.
    Dubouchaud H; Granier P; Mercier J; Le Peuch C; Prefaut C
    J Appl Physiol (1985); 1996 Feb; 80(2):416-21. PubMed ID: 8929578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of myocardial volume overload and heart failure on lactate transport into isolated cardiac myocytes.
    Evans RK; Schwartz DD; Gladden LB
    J Appl Physiol (1985); 2003 Mar; 94(3):1169-76. PubMed ID: 12571142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of heart failure on skeletal muscle myofibrillar protein content, isoform expression and calcium sensitivity.
    Toth MJ; Palmer BM; LeWinter MM
    Int J Cardiol; 2006 Feb; 107(2):211-9. PubMed ID: 16412799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of streptozotocin-induced diabetes on markers of skeletal muscle metabolism and monocarboxylate transporter 1 to monocarboxylate transporter 4 transporters.
    Py G; Lambert K; Milhavet O; Eydoux N; Préfaut C; Mercier J
    Metabolism; 2002 Jul; 51(7):807-13. PubMed ID: 12077722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular carbonic anhydrase activity facilitates lactic acid transport in rat skeletal muscle fibres.
    Wetzel P; Hasse A; Papadopoulos S; Voipio J; Kaila K; Gros G
    J Physiol; 2001 Mar; 531(Pt 3):743-56. PubMed ID: 11251055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1 and MCT4 in rat skeletal muscle.
    Enoki T; Yoshida Y; Lally J; Hatta H; Bonen A
    J Physiol; 2006 Nov; 577(Pt 1):433-43. PubMed ID: 16959859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training intensity-dependent and tissue-specific increases in lactate uptake and MCT-1 in heart and muscle.
    Baker SK; McCullagh KJ; Bonen A
    J Appl Physiol (1985); 1998 Mar; 84(3):987-94. PubMed ID: 9480961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac and skeletal muscle mitochondria have a monocarboxylate transporter MCT1.
    Brooks GA; Brown MA; Butz CE; Sicurello JP; Dubouchaud H
    J Appl Physiol (1985); 1999 Nov; 87(5):1713-8. PubMed ID: 10562613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of hypoxia-induced anorexia and right ventricular hypertrophy on lactate transport and MCT expression in rat muscle.
    Py G; Eydoux N; Lambert K; Chapot R; Koulmann N; Sanchez H; Bahi L; Peinnequin A; Mercier J; Bigard AX
    Metabolism; 2005 May; 54(5):634-44. PubMed ID: 15877294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training does not affect zero-trans lactate transport across mixed rat skeletal muscle sarcolemmal vesicles.
    Roth DA; Brooks GA
    J Appl Physiol (1985); 1993 Oct; 75(4):1559-65. PubMed ID: 8282604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of overload on phenotypic remodeling in regenerated skeletal muscle.
    Bigard AX; Zoll J; Ribera F; Mateo P; Sanchez H; Serrurier B; Ventura-Clapier R
    Am J Physiol Cell Physiol; 2001 Nov; 281(5):C1686-94. PubMed ID: 11600433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles.
    Roth DA; Brooks GA
    Arch Biochem Biophys; 1990 Jun; 279(2):386-94. PubMed ID: 2350185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate transport by skeletal muscle sarcolemmal vesicles.
    McDermott JC; Bonen A
    Mol Cell Biochem; 1993 May; 122(2):113-21. PubMed ID: 8232242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactate transport and lactate transporters in skeletal muscle.
    Bonen A; Baker SK; Hatta H
    Can J Appl Physiol; 1997 Dec; 22(6):531-52. PubMed ID: 9415827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heart failure in rats causes changes in skeletal muscle morphology and gene expression that are not explained by reduced activity.
    Simonini A; Long CS; Dudley GA; Yue P; McElhinny J; Massie BM
    Circ Res; 1996 Jul; 79(1):128-36. PubMed ID: 8925560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle contraction increases lactate transport while reducing sarcolemmal MCT4, but not MCT1.
    Tonouchi M; Hatta H; Bonen A
    Am J Physiol Endocrinol Metab; 2002 May; 282(5):E1062-9. PubMed ID: 11934671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in skeletal muscle gene expression in the rat with chronic congestive heart failure.
    Simonini A; Massie BM; Long CS; Qi M; Samarel AM
    J Mol Cell Cardiol; 1996 Aug; 28(8):1683-91. PubMed ID: 8877778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactate transport activity in rat skeletal muscle sarcolemmal vesicles after acute exhaustive exercise.
    Dubouchaud H; Eydoux N; Granier P; Préfaut C; Mercier J
    J Appl Physiol (1985); 1999 Sep; 87(3):955-61. PubMed ID: 10484563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal muscle myofibrillar mRNA expression in heart failure: relationship to local and circulating hormones.
    Toth MJ; Ades PA; Lewinter MM; Tracy RP; Tchernof A
    J Appl Physiol (1985); 2006 Jan; 100(1):35-41. PubMed ID: 16141380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.