These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry. Whittal RM; Ball HL; Cohen FE; Burlingame AL; Prusiner SB; Baldwin MA Protein Sci; 2000 Feb; 9(2):332-43. PubMed ID: 10716185 [TBL] [Abstract][Full Text] [Related]
4. Oxidation of methionine residues in the prion protein by hydrogen peroxide. Requena JR; Dimitrova MN; Legname G; Teijeira S; Prusiner SB; Levine RL Arch Biochem Biophys; 2004 Dec; 432(2):188-95. PubMed ID: 15542057 [TBL] [Abstract][Full Text] [Related]
5. Products of Cu(II)-catalyzed oxidation of alpha-synuclein fragments containing M1-D2 and H50 residues in the presence of hydrogen peroxide. Kowalik-Jankowska T; Rajewska A; Jankowska E; Grzonka Z Dalton Trans; 2008 Feb; (6):832-8. PubMed ID: 18239841 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamic and voltammetric characterization of the metal binding to the prion protein: insights into pH dependence and redox chemistry. Davies P; Marken F; Salter S; Brown DR Biochemistry; 2009 Mar; 48(12):2610-9. PubMed ID: 19196019 [TBL] [Abstract][Full Text] [Related]
7. Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils. Bocharova OV; Breydo L; Salnikov VV; Baskakov IV Biochemistry; 2005 May; 44(18):6776-87. PubMed ID: 15865423 [TBL] [Abstract][Full Text] [Related]
8. Coordination of copper(II) ions by the fragments of neuropeptide gamma containing D1, H9, H12 residues and products of copper-catalyzed oxidation. Jankowska E; Pietruszka M; Kowalik-Jankowska T Dalton Trans; 2012 Feb; 41(6):1683-94. PubMed ID: 22159001 [TBL] [Abstract][Full Text] [Related]
9. Coordination abilities of a fragment containing D1 and H12 residues of neuropeptide gamma and products of metal-catalyzed oxidation. Kowalik-Jankowska T; Jankowska E; Kasprzykowski F Inorg Chem; 2010 Mar; 49(5):2182-92. PubMed ID: 20121248 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the metal-binding site of bovine growth hormone through site-specific metal-catalyzed oxidation and high-performance liquid chromatography-tandem mass spectrometry. Hovorka SW; Williams TD; Schöneich C Anal Biochem; 2002 Jan; 300(2):206-11. PubMed ID: 11779112 [TBL] [Abstract][Full Text] [Related]
11. Copper and zinc promote interactions between membrane-anchored peptides of the metal binding domain of the prion protein. Kenward AG; Bartolotti LJ; Burns CS Biochemistry; 2007 Apr; 46(14):4261-71. PubMed ID: 17371047 [TBL] [Abstract][Full Text] [Related]
12. Evidence for the involvement of histidine A(12) in the aggregation and precipitation of human relaxin induced by metal-catalyzed oxidation. Khossravi M; Shire SJ; Borchardt RT Biochemistry; 2000 May; 39(19):5876-85. PubMed ID: 10801339 [TBL] [Abstract][Full Text] [Related]
13. Effects of the pathological Q212P mutation on human prion protein non-octarepeat copper-binding site. D'Angelo P; Della Longa S; Arcovito A; Mancini G; Zitolo A; Chillemi G; Giachin G; Legname G; Benetti F Biochemistry; 2012 Aug; 51(31):6068-79. PubMed ID: 22788868 [TBL] [Abstract][Full Text] [Related]
14. Copper reduction by the octapeptide repeat region of prion protein: pH dependence and implications in cellular copper uptake. Miura T; Sasaki S; Toyama A; Takeuchi H Biochemistry; 2005 Jun; 44(24):8712-20. PubMed ID: 15952778 [TBL] [Abstract][Full Text] [Related]
15. Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Hornshaw MP; McDermott JR; Candy JM Biochem Biophys Res Commun; 1995 Feb; 207(2):621-9. PubMed ID: 7864852 [TBL] [Abstract][Full Text] [Related]
16. Prion protein does not redox-silence Cu2+, but is a sacrificial quencher of hydroxyl radicals. Nadal RC; Abdelraheim SR; Brazier MW; Rigby SE; Brown DR; Viles JH Free Radic Biol Med; 2007 Jan; 42(1):79-89. PubMed ID: 17157195 [TBL] [Abstract][Full Text] [Related]
17. Fragmentation and dimerization of copper-loaded prion protein by copper-catalysed oxidation. Shiraishi N; Inai Y; Bi W; Nishikimi M Biochem J; 2005 Apr; 387(Pt 1):247-55. PubMed ID: 15554874 [TBL] [Abstract][Full Text] [Related]
18. A potential mechanism for Cu2+ reduction, beta-cleavage, and beta-sheet initiation within the N-terminal domain of the prion protein: insights from density functional theory and molecular dynamics calculations. Pushie MJ; Vogel HJ J Toxicol Environ Health A; 2009; 72(17-18):1040-59. PubMed ID: 19697239 [TBL] [Abstract][Full Text] [Related]
19. Interaction of copper(II) with the prion peptide fragment HuPrP(76-114) encompassing four histidyl residues within and outside the octarepeat domain. Di Natale G; Osz K; Nagy Z; Sanna D; Micera G; Pappalardo G; Sóvágó I; Rizzarell E Inorg Chem; 2009 May; 48(9):4239-50. PubMed ID: 19348438 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the metal-binding site of human prolactin by site-specific metal-catalyzed oxidation. Sadineni V; Galeva NA; Schöneich C Anal Biochem; 2006 Nov; 358(2):208-15. PubMed ID: 17010299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]