BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 11404465)

  • 1. L-arginine-dependent suppression of apoptosis in Trypanosoma cruzi: contribution of the nitric oxide and polyamine pathways.
    Piacenza L; Peluffo G; Radi R
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7301-6. PubMed ID: 11404465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyamines in Trypanosoma cruzi.
    Schwarcz de Tarlovsky MN; Hernandez SM; Bedoya AM; Lammel EM; Isola EL
    Biochem Mol Biol Int; 1993 Jul; 30(3):547-58. PubMed ID: 8401312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NG-hydroxy-L-arginine and nitric oxide inhibit Caco-2 tumor cell proliferation by distinct mechanisms.
    Buga GM; Wei LH; Bauer PM; Fukuto JM; Ignarro LJ
    Am J Physiol; 1998 Oct; 275(4):R1256-64. PubMed ID: 9756558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Putrescine supplementation shifts macrophage L-arginine metabolism related-genes reducing Leishmania amazonensis infection.
    Zanatta JM; Acuña SM; de Souza Angelo Y; de Almeida Bento C; Peron JPS; Stolf BS; Muxel SM
    PLoS One; 2023; 18(3):e0283696. PubMed ID: 37000792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide inhibits polyamine-induced apoptosis in the human extravillous trophoblast cell line SGHPL-4.
    Dash PR; Cartwright JE; Whitley GS
    Hum Reprod; 2003 May; 18(5):959-68. PubMed ID: 12721169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of polyamines in myocardial ischemia/reperfusion injury and their interactions with nitric oxide.
    Zhao YJ; Xu CQ; Zhang WH; Zhang L; Bian SL; Huang Q; Sun HL; Li QF; Zhang YQ; Tian Y; Wang R; Yang BF; Li WM
    Eur J Pharmacol; 2007 May; 562(3):236-46. PubMed ID: 17382924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyamines inhibit nitric oxide synthase in rat cerebellum.
    Hu J; Mahmoud MI; el-Fakahany EE
    Neurosci Lett; 1994 Jul; 175(1-2):41-5. PubMed ID: 7526294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of arginine decarboxylase in Trypanosoma cruzi epimastigotes.
    Carrillo C; Cejas S; Huber A; González NS; Algranati ID
    J Eukaryot Microbiol; 2003; 50(5):312-6. PubMed ID: 14563168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginine decarboxylase inhibitors reduce the capacity of Trypanosoma cruzi to infect and multiply in mammalian host cells.
    Kierszenbaum F; Wirth JJ; McCann PP; Sjoerdsma A
    Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4278-82. PubMed ID: 3295879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid induction of apoptosis by deregulated uptake of polyamine analogues.
    Hu RH; Pegg AE
    Biochem J; 1997 Nov; 328 ( Pt 1)(Pt 1):307-16. PubMed ID: 9359869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arginine decarboxylase in Trypanosoma cruzi, characteristics and kinetic properties.
    Hernández S; Schwarcz de Tarlovsky S
    Cell Mol Biol (Noisy-le-grand); 1999 Jun; 45(4):383-91. PubMed ID: 10432184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of polyamines on protein kinases activities from Trypanosoma cruzi.
    Walter RD; Ebert F
    Tropenmed Parasitol; 1979 Mar; 30(1):9-12. PubMed ID: 375514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of L-arginine through polyamine and nitric oxide synthase pathways in proliferative or differentiated human colon carcinoma cells.
    Blachier F; Selamnia M; Robert V; M'Rabet-Touil H; Duée PH
    Biochim Biophys Acta; 1995 Sep; 1268(3):255-62. PubMed ID: 7548223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agmatine: at the crossroads of the arginine pathways.
    Satriano J
    Ann N Y Acad Sci; 2003 Dec; 1009():34-43. PubMed ID: 15028568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DL-alpha-difluoromethylarginine inhibits intracellular Trypanosoma cruzi multiplication by affecting cell division but not trypomastigote-amastigote transformation.
    Yakubu MA; Basso B; Kierszenbaum F
    J Parasitol; 1992 Jun; 78(3):414-9. PubMed ID: 1597782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Channelling of arginine in NO and polyamine pathways in colonocytes and consequences.
    Blachier F; Davila AM; Benamouzig R; Tome D
    Front Biosci (Landmark Ed); 2011 Jan; 16(4):1331-43. PubMed ID: 21196235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inter-relationship between polyamines and the L-arginine nitric oxide pathway in the human placenta.
    Sooranna SR; Das I
    Biochem Biophys Res Commun; 1995 Jul; 212(1):229-34. PubMed ID: 7541984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyamine depletion delays apoptosis of rat intestinal epithelial cells.
    Ray RM; Viar MJ; Yuan Q; Johnson LR
    Am J Physiol Cell Physiol; 2000 Mar; 278(3):C480-9. PubMed ID: 10712236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide effects on Rhodnius prolixus's immune responses, gut microbiota and Trypanosoma cruzi development.
    Batista KKDS; Vieira CS; Florentino EB; Caruso KFB; Teixeira PTP; Moraes CDS; Genta FA; de Azambuja P; de Castro DP
    J Insect Physiol; 2020 Oct; 126():104100. PubMed ID: 32822690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting polyamine transport in Trypanosoma cruzi.
    Reigada C; Phanstiel O; Miranda MR; Pereira CA
    Eur J Med Chem; 2018 Mar; 147():1-6. PubMed ID: 29421567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.