BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 11405095)

  • 1. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection.
    Daniell H; Muthukumar B; Lee SB
    Curr Genet; 2001 Apr; 39(2):109-16. PubMed ID: 11405095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibiotic-free chloroplast genetic engineering - an environmentally friendly approach.
    Daniell H; Wiebe PO; Millan AF
    Trends Plant Sci; 2001 Jun; 6(6):237-9. PubMed ID: 11378446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts.
    Daniell H; Lee SB; Panchal T; Wiebe PO
    J Mol Biol; 2001 Aug; 311(5):1001-9. PubMed ID: 11531335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance.
    Rathinasabapathi B; McCue KF; Gage DA; Hanson AD
    Planta; 1994; 193(2):155-62. PubMed ID: 7764986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of the Escherichia coli betaine-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine, in transgenic plants.
    Holmström KO; Welin B; Mandal A; Kristiansdottir I; Teeri TH; Lamark T; Strøm AR; Palva ET
    Plant J; 1994 Nov; 6(5):749-58. PubMed ID: 8000428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes.
    Kumar S; Dhingra A; Daniell H
    Plant Mol Biol; 2004 Sep; 56(2):203-16. PubMed ID: 15604738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast transformation in oilseed rape.
    Hou BK; Zhou YH; Wan LH; Zhang ZL; Shen GF; Chen ZH; Hu ZM
    Transgenic Res; 2003 Feb; 12(1):111-4. PubMed ID: 12650529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of marker-free plastid transformants using a transiently cointegrated selection gene.
    Klaus SM; Huang FC; Golds TJ; Koop HU
    Nat Biotechnol; 2004 Feb; 22(2):225-9. PubMed ID: 14730316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Choline import into chloroplasts limits glycine betaine synthesis in tobacco: analysis of plants engineered with a chloroplastic or a cytosolic pathway.
    Nuccio ML; McNeil SD; Ziemak MJ; Hanson AD; Jain RK; Selvaraj G
    Metab Eng; 2000 Oct; 2(4):300-11. PubMed ID: 11120642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine.
    Holmström KO; Somersalo S; Mandal A; Palva TE; Welin B
    J Exp Bot; 2000 Feb; 51(343):177-85. PubMed ID: 10938824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Containment of herbicide resistance through genetic engineering of the chloroplast genome.
    Daniell H; Datta R; Varma S; Gray S; Lee SB
    Nat Biotechnol; 1998 Apr; 16(4):345-8. PubMed ID: 9555724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of the spinach betaine aldehyde dehydrogenase (BADH) gene in transgenic tobacco plants.
    Liang Z; Ma D; Tang L; Hong Y; Luo A; Zhou J; Dai X
    Chin J Biotechnol; 1997; 13(3):153-9. PubMed ID: 9429776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloroplast-encoded chlB gene from Pinus thunbergii promotes root and early chlorophyll pigment development in Nicotiana tabaccum.
    Nazir S; Khan MS
    Mol Biol Rep; 2012 Dec; 39(12):10637-46. PubMed ID: 23053961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chloroplast transformation toolbox: selectable markers and marker removal.
    Day A; Goldschmidt-Clermont M
    Plant Biotechnol J; 2011 Jun; 9(5):540-53. PubMed ID: 21426476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance.
    Kumar S; Dhingra A; Daniell H
    Plant Physiol; 2004 Sep; 136(1):2843-54. PubMed ID: 15347789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloroplast genetic engineering via organogenesis or somatic embryogenesis.
    Dhingra A; Daniell H
    Methods Mol Biol; 2006; 323():245-62. PubMed ID: 16739583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic engineering of the biosynthesis of glycinebetaine enhances the fruit development and size of tomato.
    Zhang T; Liang J; Wang M; Li D; Liu Y; Chen THH; Yang X
    Plant Sci; 2019 Mar; 280():355-366. PubMed ID: 30824015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Simple Technology for Generating Marker-Free Chloroplast Transformants of the Green Alga Chlamydomonas reinhardtii.
    Larrea-Alvarez M; Young R; Purton S
    Methods Mol Biol; 2021; 2317():293-304. PubMed ID: 34028777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced stress tolerance in Escherichia coli and Nicotiana tabacum expressing a betaine aldehyde dehydrogenase/choline dehydrogenase fusion protein.
    Yilmaz JL; Bülow L
    Biotechnol Prog; 2002; 18(6):1176-82. PubMed ID: 12467448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A protocol for expression of foreign genes in chloroplasts.
    Verma D; Samson NP; Koya V; Daniell H
    Nat Protoc; 2008; 3(4):739-58. PubMed ID: 18388956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.