These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

31 related articles for article (PubMed ID: 11405257)

  • 1. Combined Exposure to Metals in Drinking Water Alters the Dopamine System in Mouse Striatum.
    Kim H; Lee D; Kim K
    Int J Environ Res Public Health; 2021 Jun; 18(12):. PubMed ID: 34207128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of lead, restraint stress or their co-exposure on the movement disorders incidence in male mice.
    Hosseini-Sharifabad A; Naghibzadeh S; Hajhashemi V
    Res Pharm Sci; 2019 Aug; 14(4):343-350. PubMed ID: 31516511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lead-Induced Atypical Parkinsonism in Rats: Behavioral, Electrophysiological, and Neurochemical Evidence for a Role of Noradrenaline Depletion.
    Sabbar M; Delaville C; De Deurwaerdère P; Lakhdar-Ghazal N; Benazzouz A
    Front Neurosci; 2018; 12():173. PubMed ID: 29615861
    [No Abstract]   [Full Text] [Related]  

  • 4. Circadian Clock Protein Content and Daily Rhythm of Locomotor Activity Are Altered after Chronic Exposure to Lead in Rat.
    Sabbar M; Dkhissi-Benyahya O; Benazzouz A; Lakhdar-Ghazal N
    Front Behav Neurosci; 2017; 11():178. PubMed ID: 28970786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of divalent metal toxicity in affective disorders.
    Menon AV; Chang J; Kim J
    Toxicology; 2016 Jan; 339():58-72. PubMed ID: 26551072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are newborn rat-derived neural stem cells more sensitive to lead neurotoxicity?
    Chan YH; Gao M; Wu W
    Neural Regen Res; 2013 Mar; 8(7):581-92. PubMed ID: 25206702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New perspectives on oxidized genome damage and repair inhibition by pro-oxidant metals in neurological diseases.
    Mitra J; Guerrero EN; Hegde PM; Wang H; Boldogh I; Rao KS; Mitra S; Hegde ML
    Biomolecules; 2014 Jul; 4(3):678-703. PubMed ID: 25036887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Ascorbic Acid and Garlic Administration on Lead-Induced Neural Damage in Rat Offspring's Hippocampus.
    Sadeghi A; Ebrahimzadeh Bideskan A; Alipour F; Fazel A; Haghir H
    Iran J Basic Med Sci; 2013 Feb; 16(2):157-64. PubMed ID: 24298384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic lead exposure reduces doublecortin-expressing immature neurons in young adult guinea pig cerebral cortex.
    Huang J; Huang K; Shang L; Wang H; Zhang M; Fan CL; Chen D; Yan X; Xiong K
    BMC Neurosci; 2012 Jul; 13():82. PubMed ID: 22812564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Industrial toxicants and Parkinson's disease.
    Caudle WM; Guillot TS; Lazo CR; Miller GW
    Neurotoxicology; 2012 Mar; 33(2):178-88. PubMed ID: 22309908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of cumulative lead exposure with Parkinson's disease.
    Weisskopf MG; Weuve J; Nie H; Saint-Hilaire MH; Sudarsky L; Simon DK; Hersh B; Schwartz J; Wright RO; Hu H
    Environ Health Perspect; 2010 Nov; 118(11):1609-13. PubMed ID: 20807691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basic apoptotic mechanisms of lead toxicity in human leukemia (HL-60) cells.
    Yedjou CG; Milner JN; Howard CB; Tchounwou PB
    Int J Environ Res Public Health; 2010 May; 7(5):2008-17. PubMed ID: 20623007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of chronic lead exposure on pro-apoptotic Bax and anti-apoptotic Bcl-2 protein expression in rat hippocampus in vivo.
    Sharifi AM; Mousavi SH; Jorjani M
    Cell Mol Neurobiol; 2010 Jul; 30(5):769-74. PubMed ID: 20148304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lead affects apoptosis and related gene XIAP and Smac expression in the hippocampus of developing rats.
    Liu J; Han D; Li Y; Zheng L; Gu C; Piao Z; Au WW; Xu X; Huo X
    Neurochem Res; 2010 Mar; 35(3):473-9. PubMed ID: 19911273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular targets of lead in brain neurotoxicity.
    Marchetti C
    Neurotox Res; 2003; 5(3):221-36. PubMed ID: 12835126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postnatal inorganic lead exposure decreases the number of spontaneously active midbrain dopamine neurons in the rat.
    Tavakoli-Nezhad M; Barron AJ; Pitts DK
    Neurotoxicology; 2001 Apr; 22(2):259-69. PubMed ID: 11405257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal inorganic lead exposure reduces midbrain dopaminergic impulse flow and decreases dopamine D1 receptor sensitivity in nucleus accumbens neurons.
    Tavakoli-Nezhad M; Pitts DK
    J Pharmacol Exp Ther; 2005 Mar; 312(3):1280-8. PubMed ID: 15550573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute and chronic administration of the selective sigma1 receptor agonist SA4503 significantly alters the activity of midbrain dopamine neurons in rats: An in vivo electrophysiological study.
    Minabe Y; Matsuno K; Ashby CR
    Synapse; 1999 Aug; 33(2):129-40. PubMed ID: 10400891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of the acute and chronic administration of CP 96,345, a selective neurokinin1 receptor antagonist, on midbrain dopamine neurons in the rat: a single unit, extracellular recording study.
    Minabe Y; Emori K; Toor A; Stutzmann GE; Ashby CR
    Synapse; 1996 Jan; 22(1):35-45. PubMed ID: 8822476
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.