BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11405751)

  • 1. Amination of grignard reagents with retention of configuration.
    Hoffmann RW; Hölzer B; Knopff O
    Org Lett; 2001 Jun; 3(12):1945-8. PubMed ID: 11405751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kumada-Corriu coupling of Grignard reagents, probed with a chiral Grignard reagent.
    Hölzer B; Hoffmann RW
    Chem Commun (Camb); 2003 Mar; (6):732-3. PubMed ID: 12703796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of primary amines by the electrophilic amination of Grignard reagents with 1,3-dioxolan-2-one O-sulfonyloxime.
    Kitamura M; Suga T; Chiba S; Narasaka K
    Org Lett; 2004 Nov; 6(24):4619-21. PubMed ID: 15548090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The quest for chiral Grignard reagents.
    Hoffmann RW
    Chem Soc Rev; 2003 Jul; 32(4):225-30. PubMed ID: 12875028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential one-pot addition of excess aryl-Grignard reagents and electrophiles to O-alkyl thioformates.
    Murai T; Morikawa K; Maruyama T
    Chemistry; 2013 Sep; 19(39):13112-9. PubMed ID: 23946145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper-catalyzed electrophilic amination of organozinc nucleophiles: documentation of O-benzoyl hydroxylamines as broadly useful R2N(+) and RHN(+) synthons.
    Berman AM; Johnson JS
    J Org Chem; 2006 Jan; 71(1):219-24. PubMed ID: 16388639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do dihydroxymagnesium carboxylates form Grignard-type reagents? A theoretical investigation on decarboxylative fragmentation.
    Ruf A; Kanawati B; Schmitt-Kopplin P
    J Mol Model; 2018 Mar; 24(4):106. PubMed ID: 29589173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-catalyzed electrophilic amination of functionalized diarylzinc reagents.
    Berman AM; Johnson JS
    J Org Chem; 2005 Jan; 70(1):364-6. PubMed ID: 15624951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diastereotopos-differentiation in the Rh-catalyzed amination of benzylic methylene groups in the α-position to a stereogenic center.
    Nörder A; Warren SA; Herdtweck E; Huber SM; Bach T
    J Am Chem Soc; 2012 Aug; 134(32):13524-31. PubMed ID: 22866877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereochemistry of the transmetalation of Grignard reagents to copper (I) and manganese (II).
    Hoffmann RW; Hölzer B
    J Am Chem Soc; 2002 Apr; 124(16):4204-5. PubMed ID: 11960437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inversion of Configuration at the Phosphorus Nucleophile in the Diastereoselective and Enantioselective Synthesis of P-Stereogenic syn-Phosphiranes from Chiral Epoxides.
    Muldoon JA; Varga BR; Deegan MM; Chapp TW; Eördögh ÁM; Hughes RP; Glueck DS; Moore CE; Rheingold AL
    Angew Chem Int Ed Engl; 2018 Apr; 57(18):5047-5051. PubMed ID: 29484790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition-metal-free electrophilic amination between aryl Grignard reagents and N-chloroamines.
    Hatakeyama T; Yoshimoto Y; Ghorai SK; Nakamura M
    Org Lett; 2010 Apr; 12(7):1516-9. PubMed ID: 20222741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of electrophilic amination reagents for N-amination of 2-oxazolidinones and application to synthesis of chiral hydrazones.
    Shen Y; Friestad GK
    J Org Chem; 2002 Aug; 67(17):6236-9. PubMed ID: 12182669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to prepare a chiral Grignard reagent: a theoretical proposal.
    Chen ZN; Fu G; Xu X
    Org Lett; 2011 Apr; 13(8):2046-9. PubMed ID: 21428284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optically active seleninate esters: isolation, absolute configuration, racemization mechanism, and transformation into chiral selenoxide.
    Nakashima Y; Shimizu T; Hirabayashi K; Iwasaki F; Yamasaki M; Kamigata N
    J Org Chem; 2005 Jun; 70(13):5020-7. PubMed ID: 15960501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the Halogen-Magnesium Exchange by using New Turbo-Grignard Reagents.
    Ziegler DS; Wei B; Knochel P
    Chemistry; 2019 Feb; 25(11):2695-2703. PubMed ID: 30230067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereochemistry of cyclopropane formation involving group IV organometallic complexes.
    Casey CP; Strotman NA
    J Am Chem Soc; 2004 Feb; 126(6):1699-704. PubMed ID: 14871100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of fluorinated pseudopeptides: metal mediated reversal of stereochemistry in diastereoselective addition of organometallic reagents to N-(tert-butanesulfinyl)-α-fluoroenimines.
    Pierry C; Cahard D; Couve-Bonnaire S; Pannecoucke X
    Org Biomol Chem; 2011 Apr; 9(7):2378-86. PubMed ID: 21327214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic studies of the copper-catalyzed electrophilic amination of diorganozinc reagents and development of a zinc-free protocol.
    Campbell MJ; Johnson JS
    Org Lett; 2007 Apr; 9(8):1521-4. PubMed ID: 17362022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereospecific nucleophilic substitution of optically pure H-phosphinates: a general way for the preparation of chiral P-stereogenic phosphine oxides.
    Xu Q; Zhao CQ; Han LB
    J Am Chem Soc; 2008 Sep; 130(38):12648-55. PubMed ID: 18761459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.