These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 11406586)

  • 21. Binding and degradation of heterodimeric substrates by ClpAP and ClpXP.
    Sharma S; Hoskins JR; Wickner S
    J Biol Chem; 2005 Feb; 280(7):5449-55. PubMed ID: 15591068
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The RssB response regulator directly targets sigma(S) for degradation by ClpXP.
    Zhou Y; Gottesman S; Hoskins JR; Maurizi MR; Wickner S
    Genes Dev; 2001 Mar; 15(5):627-37. PubMed ID: 11238382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence.
    Hoskins JR; Yanagihara K; Mizuuchi K; Wickner S
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11037-42. PubMed ID: 12177439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A specificity-enhancing factor for the ClpXP degradation machine.
    Levchenko I; Seidel M; Sauer RT; Baker TA
    Science; 2000 Sep; 289(5488):2354-6. PubMed ID: 11009422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein knots provide mechano-resilience to an AAA+ protease-mediated proteolysis with profound ATP energy expenses.
    Sriramoju MK; Chen Y; Hsu SD
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140330. PubMed ID: 31756432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis.
    Flynn JM; Levchenko I; Seidel M; Wickner SH; Sauer RT; Baker TA
    Proc Natl Acad Sci U S A; 2001 Sep; 98(19):10584-9. PubMed ID: 11535833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cytoplasmic degradation of ssrA-tagged proteins.
    Farrell CM; Grossman AD; Sauer RT
    Mol Microbiol; 2005 Sep; 57(6):1750-61. PubMed ID: 16135238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing.
    Kenniston JA; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1390-5. PubMed ID: 15671177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of a specificity factor for an AAA+ ATPase: assembly of SspB dimers with ssrA-tagged proteins and the ClpX hexamer.
    Wah DA; Levchenko I; Baker TA; Sauer RT
    Chem Biol; 2002 Nov; 9(11):1237-45. PubMed ID: 12445774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A context-dependent ClpX recognition determinant located at the C terminus of phage Mu repressor.
    Defenbaugh DA; Nakai H
    J Biol Chem; 2003 Dec; 278(52):52333-9. PubMed ID: 14559921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate-translocating loops regulate mechanochemical coupling and power production in AAA+ protease ClpXP.
    Rodriguez-Aliaga P; Ramirez L; Kim F; Bustamante C; Martin A
    Nat Struct Mol Biol; 2016 Nov; 23(11):974-981. PubMed ID: 27669037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Turnover of FlhD and FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP-dependent ClpXP protease.
    Tomoyasu T; Takaya A; Isogai E; Yamamoto T
    Mol Microbiol; 2003 Apr; 48(2):443-52. PubMed ID: 12675803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacteriophage Mu repressor as a target for the Escherichia coli ATP-dependent Clp Protease.
    Laachouch JE; Desmet L; Geuskens V; Grimaud R; Toussaint A
    EMBO J; 1996 Jan; 15(2):437-44. PubMed ID: 8617219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis of degradation signal recognition by SspB, a specificity-enhancing factor for the ClpXP proteolytic machine.
    Song HK; Eck MJ
    Mol Cell; 2003 Jul; 12(1):75-86. PubMed ID: 12887894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stepwise unfolding of a β barrel protein by the AAA+ ClpXP protease.
    Nager AR; Baker TA; Sauer RT
    J Mol Biol; 2011 Oct; 413(1):4-16. PubMed ID: 21821046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SsrA-mediated tagging in Bacillus subtilis.
    Wiegert T; Schumann W
    J Bacteriol; 2001 Jul; 183(13):3885-9. PubMed ID: 11395451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alternating translocation of protein substrates from both ends of ClpXP protease.
    Ortega J; Lee HS; Maurizi MR; Steven AC
    EMBO J; 2002 Sep; 21(18):4938-49. PubMed ID: 12234933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lon protease degrades transfer-messenger RNA-tagged proteins.
    Choy JS; Aung LL; Karzai AW
    J Bacteriol; 2007 Sep; 189(18):6564-71. PubMed ID: 17616591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Feb; 15(2):139-45. PubMed ID: 18223658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An essential protease involved in bacterial cell-cycle control.
    Jenal U; Fuchs T
    EMBO J; 1998 Oct; 17(19):5658-69. PubMed ID: 9755166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.