These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 11406586)

  • 41. Trans-targeting of protease substrates by conformationally activating a regulable ClpX-recognition motif.
    Marshall-Batty KR; Nakai H
    Mol Microbiol; 2008 Feb; 67(4):920-33. PubMed ID: 18179597
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The ClpXP protease unfolds substrates using a constant rate of pulling but different gears.
    Sen M; Maillard RA; Nyquist K; Rodriguez-Aliaga P; Pressé S; Martin A; Bustamante C
    Cell; 2013 Oct; 155(3):636-646. PubMed ID: 24243020
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine.
    Aubin-Tam ME; Olivares AO; Sauer RT; Baker TA; Lang MJ
    Cell; 2011 Apr; 145(2):257-67. PubMed ID: 21496645
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ClpXP, an ATP-powered unfolding and protein-degradation machine.
    Baker TA; Sauer RT
    Biochim Biophys Acta; 2012 Jan; 1823(1):15-28. PubMed ID: 21736903
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanically Watching the ClpXP Proteolytic Machinery.
    Cordova JC; Olivares AO; Lang MJ
    Methods Mol Biol; 2017; 1486():317-341. PubMed ID: 27844434
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli.
    Lehnherr H; Yarmolinsky MB
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3274-7. PubMed ID: 7724551
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate specificity.
    Maglica Z; Striebel F; Weber-Ban E
    J Mol Biol; 2008 Dec; 384(2):503-11. PubMed ID: 18835567
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bivalent tethering of SspB to ClpXP is required for efficient substrate delivery: a protein-design study.
    Bolon DN; Wah DA; Hersch GL; Baker TA; Sauer RT
    Mol Cell; 2004 Feb; 13(3):443-9. PubMed ID: 14967151
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure of a delivery protein for an AAA+ protease in complex with a peptide degradation tag.
    Levchenko I; Grant RA; Wah DA; Sauer RT; Baker TA
    Mol Cell; 2003 Aug; 12(2):365-72. PubMed ID: 14536076
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal.
    Lee C; Schwartz MP; Prakash S; Iwakura M; Matouschek A
    Mol Cell; 2001 Mar; 7(3):627-37. PubMed ID: 11463387
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Knots can impair protein degradation by ATP-dependent proteases.
    San Martín Á; Rodriguez-Aliaga P; Molina JA; Martin A; Bustamante C; Baez M
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):9864-9869. PubMed ID: 28847957
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stochastic but highly coordinated protein unfolding and translocation by the ClpXP proteolytic machine.
    Cordova JC; Olivares AO; Shin Y; Stinson BM; Calmat S; Schmitz KR; Aubin-Tam ME; Baker TA; Lang MJ; Sauer RT
    Cell; 2014 Jul; 158(3):647-58. PubMed ID: 25083874
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases.
    Baytshtok V; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5377-82. PubMed ID: 25870262
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two peptide sequences can function cooperatively to facilitate binding and unfolding by ClpA and degradation by ClpAP.
    Hoskins JR; Wickner S
    Proc Natl Acad Sci U S A; 2006 Jan; 103(4):909-14. PubMed ID: 16410355
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Single molecule microscopy reveals diverse actions of substrate sequences that impair ClpX AAA+ ATPase function.
    Wang X; Simon SM; Coffino P
    J Biol Chem; 2022 Oct; 298(10):102457. PubMed ID: 36064000
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Screening for stabilization of proteins with a trans-translation signature in Escherichia coli selects for inactivation of the ClpXP protease.
    Bohn C; Binet E; Bouloc P
    Mol Genet Genomics; 2002 Jan; 266(5):827-31. PubMed ID: 11810257
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA.
    Weber-Ban EU; Reid BG; Miranker AD; Horwich AL
    Nature; 1999 Sep; 401(6748):90-3. PubMed ID: 10485712
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanical Protein Unfolding and Degradation.
    Olivares AO; Baker TA; Sauer RT
    Annu Rev Physiol; 2018 Feb; 80():413-429. PubMed ID: 29433415
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evolution of the ssrA degradation tag in Mycoplasma: specificity switch to a different protease.
    Gur E; Sauer RT
    Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16113-8. PubMed ID: 18852454
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ClpXP protease regulates the signal peptide cleavage of secretory preproteins in Bacillus subtilis with a mechanism distinct from that of the Ecs ABC transporter.
    Pummi T; Leskelä S; Wahlström E; Gerth U; Tjalsma H; Hecker M; Sarvas M; Kontinen VP
    J Bacteriol; 2002 Feb; 184(4):1010-8. PubMed ID: 11807061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.