These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 11406586)

  • 61. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation.
    Hinnerwisch J; Fenton WA; Furtak KJ; Farr GW; Horwich AL
    Cell; 2005 Jul; 121(7):1029-41. PubMed ID: 15989953
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mutagenic dissection of the sequence determinants of protein folding, recognition, and machine function.
    Sauer RT
    Protein Sci; 2013 Nov; 22(11):1675-87. PubMed ID: 23963737
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mechanism of protein remodeling by ClpA chaperone.
    Pak M; Wickner S
    Proc Natl Acad Sci U S A; 1997 May; 94(10):4901-6. PubMed ID: 9144162
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA.
    Keiler KC; Waller PR; Sauer RT
    Science; 1996 Feb; 271(5251):990-3. PubMed ID: 8584937
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mini review: ATP-dependent proteases in bacteria.
    Bittner LM; Arends J; Narberhaus F
    Biopolymers; 2016 Aug; 105(8):505-17. PubMed ID: 26971705
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Modulation of phage Mu repressor DNA binding and degradation by distinct determinants in its C-terminal domain.
    Mukhopadhyay B; Marshall-Batty KR; Kim BD; O'Handley D; Nakai H
    Mol Microbiol; 2003 Jan; 47(1):171-82. PubMed ID: 12492862
    [TBL] [Abstract][Full Text] [Related]  

  • 67. ClpXP degrades SsrA-tagged proteins in Streptococcus pneumoniae.
    Ahlawat S; Morrison DA
    J Bacteriol; 2009 Apr; 191(8):2894-8. PubMed ID: 19218384
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The AAA+ protease ClpXP can easily degrade a 3
    Sivertsson EM; Jackson SE; Itzhaki LS
    Sci Rep; 2019 Feb; 9(1):2421. PubMed ID: 30787316
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Regulation of endonuclease activity by proteolysis prevents breakage of unmodified bacterial chromosomes by type I restriction enzymes.
    Makovets S; Doronina VA; Murray NE
    Proc Natl Acad Sci U S A; 1999 Aug; 96(17):9757-62. PubMed ID: 10449767
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cargo competition for a dimerization interface restricts and stabilizes a bacterial protease adaptor.
    Kuhlmann NJ; Doxsey D; Chien P
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33875581
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon.
    Neher SB; Villén J; Oakes EC; Bakalarski CE; Sauer RT; Gygi SP; Baker TA
    Mol Cell; 2006 Apr; 22(2):193-204. PubMed ID: 16630889
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Engineering an SspB-mediated degron for novel controllable protein degradation.
    Lei Y; Chen W; Xiang L; Wu J; Zhen Z; Jin JM; Liang C; Tang SY
    Metab Eng; 2022 Nov; 74():150-159. PubMed ID: 36328294
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Intrinsic Dynamics of the ClpXP Proteolytic Machine Using Elastic Network Models.
    González-Paz L; Lossada C; Hurtado-León ML; Fernández-Materán FV; Paz JL; Parvizi S; Cardenas Castillo RE; Romero F; Alvarado YJ
    ACS Omega; 2023 Feb; 8(8):7302-7318. PubMed ID: 36873006
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A proteolytic AAA+ machine poised to unfold a protein substrate.
    Ghanbarpour A; Sauer RT; Davis JH
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168193
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Studies of tissue endoproteases determining viral tropism].
    Gotoh B
    Uirusu; 1992 Dec; 42(2):119-31. PubMed ID: 1295208
    [No Abstract]   [Full Text] [Related]  

  • 76. Stochastic but highly coordinated protein unfolding and translocation by the ClpXP proteolytic machine.
    Cordova JC; Olivares AO; Shin Y; Stinson BM; Calmat S; Schmitz KR; Aubin-Tam ME; Baker TA; Lang MJ; Sauer RT
    Cell; 2014 Jul; 158(3):647-58. PubMed ID: 25083874
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Energy-dependent degradation: Linkage between ClpX-catalyzed nucleotide hydrolysis and protein-substrate processing.
    Burton RE; Baker TA; Sauer RT
    Protein Sci; 2003 May; 12(5):893-902. PubMed ID: 12717012
    [TBL] [Abstract][Full Text] [Related]  

  • 78. FtsH degrades dihydrofolate reductase by recognizing a partially folded species.
    Morehouse JP; Baker TA; Sauer RT
    Protein Sci; 2022 Sep; 31(9):e4410. PubMed ID: 36630366
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Combinatorial and antagonistic effects of tubulin glutamylation and glycylation on katanin microtubule severing.
    Szczesna E; Zehr EA; Cummings SW; Szyk A; Mahalingan KK; Li Y; Roll-Mecak A
    Dev Cell; 2022 Nov; 57(21):2497-2513.e6. PubMed ID: 36347241
    [TBL] [Abstract][Full Text] [Related]  

  • 80. AAA+ protease-adaptor structures reveal altered conformations and ring specialization.
    Kim S; Fei X; Sauer RT; Baker TA
    Nat Struct Mol Biol; 2022 Nov; 29(11):1068-1079. PubMed ID: 36329286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.