BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 11407847)

  • 1. Effects of length and depth of vibration of the vocal folds on the relationship between transglottal pressure and fundamental frequency of phonation in canine larynges.
    Kataoka K; Kitajima K
    Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):556-61. PubMed ID: 11407847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between transglottal pressure and fundamental frequency of phonation, with effects of dehydration produced by atropine, in healthy volunteers.
    Tanaka K; Kitajima K; Tanaka H
    Ann Otol Rhinol Laryngol; 2001 Nov; 110(11):1066-71. PubMed ID: 11713920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between transglottal pressure and fundamental frequency of phonation--study using a rubber model.
    Owaki S; Kataoka H; Shimizu T
    J Voice; 2010 Mar; 24(2):127-32. PubMed ID: 19230603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of transglottal pressure on fundamental frequency of phonation: study with a rubber model.
    Kataoka H; Kitajima K; Owaki S
    Ann Otol Rhinol Laryngol; 2001 Jan; 110(1):56-62. PubMed ID: 11201810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A methodological study of hemilaryngeal phonation.
    Jiang JJ; Titze IR
    Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Influence of transglottal pressure on vocal fundamental frequency changes with stiffness of vocal folds].
    Tanaka K; Kitajima K; Kataoka H; Kataoka K; Tanaka H
    Nihon Jibiinkoka Gakkai Kaiho; 1997 Jan; 100(1):1-6. PubMed ID: 9038069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-aided technique for automatic determination of the relationship between transglottal pressure change and voice fundamental frequency.
    Deguchi S; Kawashima K; Washio S
    Ann Otol Rhinol Laryngol; 2008 Dec; 117(12):876-80. PubMed ID: 19140531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of cricothyroid muscle action on the relation between subglottal pressure and fundamental frequency in an in vivo canine model.
    Hsiao TY; Liu CM; Luschei ES; Titze IR
    J Voice; 2001 Jun; 15(2):187-93. PubMed ID: 11411473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
    Hsiao TY; Solomon NP; Luschei ES; Titze IR; Liu K; Fu TC; Hsu MM
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical analysis of effects of transglottal pressure change on fundamental frequency of phonation.
    Deguchi S; Matsuzaki Y; Ikeda T
    Ann Otol Rhinol Laryngol; 2007 Feb; 116(2):128-34. PubMed ID: 17388237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of artificially lengthened vocal tract on vocal fold oscillation's fundamental frequency.
    Hanamitsu M; Kataoka H
    J Voice; 2004 Jun; 18(2):169-75. PubMed ID: 15193649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of phonatory efficiency by vocal fold tension and glottic width in the excised canine larynx.
    Slavit DH; McCaffrey TV
    Ann Otol Rhinol Laryngol; 1991 Aug; 100(8):668-77. PubMed ID: 1872519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vocal fold vibration in simulated head voice phonation in excised canine larynges.
    Shiotani A; Fukuda H; Kawaida M; Kanzaki J
    Eur Arch Otorhinolaryngol; 1996; 253(6):356-63. PubMed ID: 8858261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separate detection of vocal fold vibration by optoreflectometry: a study of biphonation on excised porcine larynges.
    Ouaknine M; Garrel R; Giovanni A
    Folia Phoniatr Logop; 2003; 55(1):28-38. PubMed ID: 12566764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonatory vocal fold function in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic movement of air tract fluid in lubrication of the larynx during phonation: a basic study using excised canine larynges and experimental air tract fluid by means of X-ray stroboscope system.
    Kawaida M; Fukuda H; Kano S; Shiotani A; Kohno N
    Auris Nasus Larynx; 1990; 16(4):237-43. PubMed ID: 2360887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS; Hanson DG; Gerratt BR; Trapp TK; Macagba C; Natividad M
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of subglottal resonance upon vocal fold vibration.
    Austin SF; Titze IR
    J Voice; 1997 Dec; 11(4):391-402. PubMed ID: 9422272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of mucosal wave propagation and vertical phase difference in vocal fold vibration.
    Titze IR; Jiang JJ; Hsiao TY
    Ann Otol Rhinol Laryngol; 1993 Jan; 102(1 Pt 1):58-63. PubMed ID: 8420470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.