These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 11407969)

  • 1. Aging and effects of ultraviolet A exposure may be quantified by fluorescence excitation spectroscopy in vivo.
    Tian WD; Gillies R; Brancaleon L; Kollias N
    J Invest Dermatol; 2001 Jun; 116(6):840-5. PubMed ID: 11407969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging.
    Kollias N; Gillies R; Moran M; Kochevar IE; Anderson RR
    J Invest Dermatol; 1998 Nov; 111(5):776-80. PubMed ID: 9804337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The in vivo fluorescence of tryptophan moieties in human skin increases with UV exposure and is a marker for epidermal proliferation.
    Brancaleon L; Lin G; Kollias N
    J Invest Dermatol; 1999 Dec; 113(6):977-82. PubMed ID: 10594740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of cell and matrix mechanics using fluorescence excitation spectroscopy: Feasibility study in collagen gels containing fibroblasts.
    Padilla-Martinez JP; Wang R; Franco W
    Lasers Surg Med; 2016 Apr; 48(4):377-84. PubMed ID: 26990874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical changes in hairless mouse skin collagen after chronic exposure to ultraviolet-A radiation.
    Kligman LH; Gebre M
    Photochem Photobiol; 1991 Aug; 54(2):233-7. PubMed ID: 1780360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV fluorescence excitation imaging of healing of wounds in skin: Evaluation of wound closure in organ culture model.
    Wang Y; Gutierrez-Herrera E; Ortega-Martinez A; Anderson RR; Franco W
    Lasers Surg Med; 2016 Sep; 48(7):678-85. PubMed ID: 27075645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence spectroscopy in the visible range for the assessment of UVB radiation effects in hairless mice skin.
    de Paula Campos C; de Paula D'Almeida C; Nogueira MS; Moriyama LT; Pratavieira S; Kurachi C
    Photodiagnosis Photodyn Ther; 2017 Dec; 20():21-27. PubMed ID: 28860083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive assessment of UV-induced skin damage: comparison of optical measurements to histology and MMP expression.
    Papazoglou E; Sunkari C; Neidrauer M; Klement JF; Uitto J
    Photochem Photobiol; 2010; 86(1):138-45. PubMed ID: 19906094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cathepsin G inhibitor prevents ultraviolet B-induced photoaging in hairless mice via inhibition of fibronectin fragmentation.
    Son ED; Shim JH; Choi H; Kim H; Lim KM; Chung JH; Byun SY; Lee TR
    Dermatology; 2012; 224(4):352-60. PubMed ID: 22759782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence excitation spectroscopy provides information about human skin in vivo.
    Gillies R; Zonios G; Anderson RR; Kollias N
    J Invest Dermatol; 2000 Oct; 115(4):704-7. PubMed ID: 10998147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green tea polyphenols prevent ultraviolet light-induced oxidative damage and matrix metalloproteinases expression in mouse skin.
    Vayalil PK; Mittal A; Hara Y; Elmets CA; Katiyar SK
    J Invest Dermatol; 2004 Jun; 122(6):1480-7. PubMed ID: 15175040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hairless mouse model of photoaging: evaluation of the relationship between dermal elastin, collagen, skin thickness and wrinkles.
    Moloney SJ; Edmonds SH; Giddens LD; Learn DB
    Photochem Photobiol; 1992 Oct; 56(4):505-11. PubMed ID: 1454880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavelength dependence of histological, physical, and visible changes in chronically UV-irradiated hairless mouse skin.
    Bissett DL; Hannon DP; Orr TV
    Photochem Photobiol; 1989 Dec; 50(6):763-9. PubMed ID: 2626490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentable metabolite of Zymomonas mobilis controls collagen reduction in photoaging skin by improving TGF-beta/Smad signaling suppression.
    Tanaka H; Yamaba H; Kosugi N; Mizutani H; Nakata S
    Arch Dermatol Res; 2008 Apr; 300 Suppl 1():S57-64. PubMed ID: 18060420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelength dependence for DNA synthesis inhibition in hairless mouse epidermis.
    Kaidbey K
    Photodermatol; 1988 Apr; 5(2):65-70. PubMed ID: 3399437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmentation of UV-induced skin wrinkling by infrared irradiation in hairless mice.
    Kim HH; Lee MJ; Lee SR; Kim KH; Cho KH; Eun HC; Chung JH
    Mech Ageing Dev; 2005 Nov; 126(11):1170-7. PubMed ID: 16118013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute and chronic ultraviolet radiation induction of epidermal ornithine decarboxylase activity in hairless mice.
    Hillebrand GG; Winslow MS; Benzinger MJ; Heitmeyer DA; Bissett DL
    Cancer Res; 1990 Mar; 50(5):1580-4. PubMed ID: 2302717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ultraviolet-irradiated hairless mouse: a model for photoaging.
    Kligman LH
    J Am Acad Dermatol; 1989 Sep; 21(3 Pt 2):623-31. PubMed ID: 2778126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skin aging and natural photoprotection.
    Wulf HC; Sandby-Møller J; Kobayasi T; Gniadecki R
    Micron; 2004; 35(3):185-91. PubMed ID: 15036273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrofluorescence of skin and hair.
    McMullen RL; Chen S; Moore DJ
    Int J Cosmet Sci; 2012 Jun; 34(3):246-56. PubMed ID: 22296214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.