These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 11408083)
1. Sensitivity of muscle satellite cells to pollutants: an in vitro and in vivo comparative approach. Fauconneau B; Paboeuf G Aquat Toxicol; 2001 Aug; 53(3-4):247-63. PubMed ID: 11408083 [TBL] [Abstract][Full Text] [Related]
2. In vitro effect of various xenobiotics on trout gill cell volume regulation after hypotonic shock. Leguen I; Prunet P Aquat Toxicol; 2001 Aug; 53(3-4):201-14. PubMed ID: 11408080 [TBL] [Abstract][Full Text] [Related]
3. Effects of prochloraz and nonylphenol diethoxylate on hepatic biotransformation enzymes in trout: a comparative in vitro/in vivo-assessment using cultured hepatocytes. Sturm A; Cravedi JP; Perdu E; Baradat M; Segner H Aquat Toxicol; 2001 Aug; 53(3-4):229-45. PubMed ID: 11408082 [TBL] [Abstract][Full Text] [Related]
4. In vivo and in vitro effects of prochloraz and nonylphenol ethoxylates on trout spermatogenesis. Le Gac F; Thomas JL; Mourot B; Loir M Aquat Toxicol; 2001 Aug; 53(3-4):187-200. PubMed ID: 11408079 [TBL] [Abstract][Full Text] [Related]
5. Prochloraz and nonylphenol diethoxylate inhibit an mdr1-like activity in vitro, but do not alter hepatic levels of P-glycoprotein in trout exposed in vivo. Sturm A; Cravedi JP; Segner H Aquat Toxicol; 2001 Aug; 53(3-4):215-28. PubMed ID: 11408081 [TBL] [Abstract][Full Text] [Related]
6. Rainbow trout primary epidermal cell proliferation as an indicator of aquatic toxicity: an in vitro/in vivo exposure comparison. Kilemade M; Lyons-Alcantara M; Rose T; Fitzgerald R; Mothersill C Aquat Toxicol; 2002 Oct; 60(1-2):43-59. PubMed ID: 12204586 [TBL] [Abstract][Full Text] [Related]
7. Metabolic fate of 2,4-dichloroaniline, prochloraz and nonylphenol diethoxylate in rainbow trout: a comparative in vivo/in vitro approach. Cravedi JP; Boudry G; Baradat M; Rao D; Debrauwer L Aquat Toxicol; 2001 Aug; 53(3-4):159-72. PubMed ID: 11408077 [TBL] [Abstract][Full Text] [Related]
8. Effect of fasting and refeeding on in vitro muscle cell proliferation in rainbow trout (Oncorhynchus mykiss). Fauconneau B; Paboeuf G Cell Tissue Res; 2000 Sep; 301(3):459-63. PubMed ID: 10994791 [TBL] [Abstract][Full Text] [Related]
9. Effects of in vivo chronic exposure to pendimethalin/Prowl 400® on sanitary status and the immune system in rainbow trout (Oncorhynchus mykiss). Danion M; Le Floch S; Kanan R; Lamour F; Quentel C Sci Total Environ; 2012 May; 424():143-52. PubMed ID: 22444063 [TBL] [Abstract][Full Text] [Related]
10. Cellular approaches for diagnostic effects assessment in ecotoxicology: introductory remarks to an EU-funded project. Segner H; Chesné C; Cravedi JP; Fauconneau B; Houlihan D; LeGac F; Loir M; Mothersill C; Pärt P; Valotaire Y; Prunet P Aquat Toxicol; 2001 Aug; 53(3-4):153-8. PubMed ID: 11408076 [No Abstract] [Full Text] [Related]
11. Short-term responses of selected endocrine parameters in juvenile rainbow trout (Oncorhynchus mykiss) exposed to 4-nonylphenol. Naderi M; Zargham D; Asadi A; Bashti T; Kamayi K Toxicol Ind Health; 2015 Dec; 31(12):1218-28. PubMed ID: 23771873 [TBL] [Abstract][Full Text] [Related]
12. The further development of rainbow trout primary epithelial cell cultures as a diagnostic tool in ecotoxicology risk assessment. Dowling K; Mothersill C Aquat Toxicol; 2001 Aug; 53(3-4):279-89. PubMed ID: 11408085 [TBL] [Abstract][Full Text] [Related]
13. Protein synthesis costs could account for the tissue-specific effects of sub-lethal copper on protein synthesis in rainbow trout (Oncorhynchus mykiss). Smith RW; Blaney SC; Dowling K; Sturm A; Jönsson M; Houlihan DF Aquat Toxicol; 2001 Aug; 53(3-4):265-77. PubMed ID: 11408084 [TBL] [Abstract][Full Text] [Related]
14. Avoidance of copper and zinc by rainbow trout Oncorhynchus mykiss pre-exposed to copper. Svecevičius G Bull Environ Contam Toxicol; 2012 Jan; 88(1):1-5. PubMed ID: 22002177 [TBL] [Abstract][Full Text] [Related]
15. An evaluation of sodium loss and gill metal binding properties in rainbow trout and yellow perch to explain species differences in copper tolerance. Taylor LN; Wood CM; McDonald DG Environ Toxicol Chem; 2003 Sep; 22(9):2159-66. PubMed ID: 12959545 [TBL] [Abstract][Full Text] [Related]
16. Influence of acclimation and cross-acclimation of metals on acute Cd toxicity and Cd uptake and distribution in rainbow trout (Oncorhynchus mykiss). McGeer JC; Nadella S; Alsop DH; Hollis L; Taylor LN; McDonald DG; Wood CM Aquat Toxicol; 2007 Aug; 84(2):190-7. PubMed ID: 17673308 [TBL] [Abstract][Full Text] [Related]
17. Reciprocal enhancement of uptake and toxicity of cadmium and calcium in rainbow trout (Oncorhynchus mykiss) liver mitochondria. Adiele RC; Stevens D; Kamunde C Aquat Toxicol; 2010 Mar; 96(4):319-27. PubMed ID: 20036780 [TBL] [Abstract][Full Text] [Related]
18. The interactive toxicity of cadmium, copper, and zinc to Ceriodaphnia dubia and rainbow trout (Oncorhynchus mykiss). Naddy RB; Cohen AS; Stubblefield WA Environ Toxicol Chem; 2015 Apr; 34(4):809-15. PubMed ID: 25641563 [TBL] [Abstract][Full Text] [Related]
19. Swimming performance and energy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure. De Boeck G; van der Ven K; Hattink J; Blust R Aquat Toxicol; 2006 Oct; 80(1):92-100. PubMed ID: 16956679 [TBL] [Abstract][Full Text] [Related]
20. Sub-lethal effects of waterborne copper in early developmental stages of rainbow trout (Oncorhynchus mykiss). Santos SW; Cachot J; Gourves PY; Clérandeau C; Morin B; Gonzalez P Ecotoxicol Environ Saf; 2019 Apr; 170():778-788. PubMed ID: 30593991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]