These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11408183)

  • 1. Salen complexes with bulky substituents as useful tools for biomimetic phenol oxidation research.
    Haikarainen A; Sipilä J; Pietikäinen P; Pajunen A; Mutikainen I
    Bioorg Med Chem; 2001 Jun; 9(6):1633-8. PubMed ID: 11408183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of isoeugenol by salen complexes with bulky substituents.
    Salanti A; Orlandi M; Tolppa EL; Zoia L
    Int J Mol Sci; 2010 Mar; 11(3):912-26. PubMed ID: 20479991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bonding of Lignin and Coniferyl Alcohol by a Redox Shuttle of Low-Molecular-Weight Lignols in Enzymatic Oxidative Dehydrogenative Polymerization.
    Nishimoto T; Takagi K; Aoki D; Fukushima K; Matsushita Y
    Biomacromolecules; 2024 Jun; 25(6):3620-3627. PubMed ID: 38806062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial steps of the peroxidase-catalyzed polymerization of coniferyl alcohol and/or sinapyl aldehyde: capillary zone electrophoresis study of pH effect.
    Fournand D; Cathala B; Lapierre C
    Phytochemistry; 2003 Jan; 62(2):139-46. PubMed ID: 12482448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic modification of kraft lignin through oxidative coupling with water-soluble phenols.
    Lund M; Ragauskas AJ
    Appl Microbiol Biotechnol; 2001 Jun; 55(6):699-703. PubMed ID: 11525617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly approach toward chiral bimetallic catalysts: bis-urea-functionalized (salen)cobalt complexes for the hydrolytic kinetic resolution of epoxides.
    Park J; Lang K; Abboud KA; Hong S
    Chemistry; 2011 Feb; 17(7):2236-45. PubMed ID: 21294187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioelectrocatalytic properties of lignin peroxidase from Phanerochaete chrysosporium in reactions with phenols, catechols and lignin-model compounds.
    Ferapontova EE; Castillo J; Gorton L
    Biochim Biophys Acta; 2006 Sep; 1760(9):1343-54. PubMed ID: 16781814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete assignments of NMR data of salens and their cobalt (III) complexes.
    Woo Y; Koh D; Lim Y
    Magn Reson Chem; 2009 Feb; 47(2):184-9. PubMed ID: 19040194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymerization of coniferyl alcohol by Mn
    Taboada-Puig R; Lú-Chau TA; Moreira MT; Feijoo G; Lema JM; Fagerstedt K; Ohra-Aho T; Liitiä T; Heikkinen H; Ropponen J; Tamminen T
    Biotechnol Prog; 2018 Jan; 34(1):81-90. PubMed ID: 28960884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics and dynamics of electron transfer and proton transfer in dissociation of metal(III)(salen)-peptide complexes in the gas phase.
    Laskin J; Yang Z; Chu IK
    J Am Chem Soc; 2008 Mar; 130(10):3218-30. PubMed ID: 18266367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural change and catalytic activity of horseradish peroxidase in oxidative polymerization of phenol.
    Akita M; Tsutsumi D; Kobayashi M; Kise H
    Biosci Biotechnol Biochem; 2001 Jul; 65(7):1581-8. PubMed ID: 11515542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of a cobalt(III)-phenoxyl radical complex by acetic acid promoted aerobic oxidation of a Co(II)salen complex.
    Vinck E; Murphy DM; Fallis IA; Strevens RR; Van Doorslaer S
    Inorg Chem; 2010 Mar; 49(5):2083-92. PubMed ID: 20121216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of efficient substrates in enhancement of peroxidase-catalyzed oxidations.
    Goodwin DC; Grover TA; Aust SD
    Biochemistry; 1997 Jan; 36(1):139-47. PubMed ID: 8993327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic studies on the oxidation of phenols by the horseradish peroxidase compound II.
    Patel PK; Mondal MS; Modi S; Behere DV
    Biochim Biophys Acta; 1997 Apr; 1339(1):79-87. PubMed ID: 9165102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catecholase activity of a series of dicopper(II) complexes with variable Cu-OH(phenol) moieties.
    Neves A; Rossi LM; Bortoluzzi AJ; Szpoganicz B; Wiezbicki C; Schwingel E; Haase W; Ostrovsky S
    Inorg Chem; 2002 Apr; 41(7):1788-94. PubMed ID: 11925171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Electron-Withdrawing Substituents on the Electronic Structure of Oxidized Ni and Cu Salen Complexes.
    Chiang L; Herasymchuk K; Thomas F; Storr T
    Inorg Chem; 2015 Jun; 54(12):5970-80. PubMed ID: 26016716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model Compounds Study for the Mechanism of Horseradish Peroxidase-Catalyzed Lignin Modification.
    Yang D; Wang Y; Huang W; Li Z; Qiu X
    Appl Biochem Biotechnol; 2020 Jul; 191(3):981-995. PubMed ID: 31950443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique properties and reactivity of high-valent manganese-oxo versus manganese-hydroxo in the salen platform.
    Kurahashi T; Kikuchi A; Shiro Y; Hada M; Fujii H
    Inorg Chem; 2010 Jul; 49(14):6664-72. PubMed ID: 20553024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of a biologically relevant antioxidant on the dehydrogenative polymerization of coniferyl alcohol.
    Holmgren A; Henriksson G; Zhang L
    Biomacromolecules; 2008 Dec; 9(12):3378-82. PubMed ID: 18991457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative Binding Affinities of Monolignols to Horseradish Peroxidase.
    Sangha AK; Petridis L; Cheng X; Smith JC
    J Phys Chem B; 2016 Aug; 120(31):7635-40. PubMed ID: 27447548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.