BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 11408433)

  • 1. Validity of inspiratory and expiratory methods of measuring gas exchange with a computerized system.
    Bassett DR; Howley ET; Thompson DL; King GA; Strath SJ; McLaughlin JE; Parr BB
    J Appl Physiol (1985); 2001 Jul; 91(1):218-24. PubMed ID: 11408433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A metabolic cart for measurement of oxygen uptake during human exercise using inspiratory flow rate.
    Jensen K; Jørgensen S; Johansen L
    Eur J Appl Physiol; 2002 Jul; 87(3):202-6. PubMed ID: 12111279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of exercise ventilation in clinical evaluation and risk stratification in patients with chronic heart failure.
    Jankowska EA; Pietruk-Kowalczyk J; Zymliński R; Witkowski T; Ponikowska B; Sebzda T; Rzeczuch K; Borodulin-Nadzieja L; Hańczycowa H; Banasiak W; Ponikowski P
    Kardiol Pol; 2003 Aug; 59(8):115-27; commentary 126-7. PubMed ID: 14560326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproducibility of the exponential rise technique of CO(2) rebreathing for measuring P(v)CO(2) and C(v)CO(2 )to non-invasively estimate cardiac output during incremental, maximal treadmill exercise.
    Cade WT; Nabar SR; Keyser RE
    Eur J Appl Physiol; 2004 May; 91(5-6):669-76. PubMed ID: 14652761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity, reliability and stability of the portable Cortex Metamax 3B gas analysis system.
    Macfarlane DJ; Wong P
    Eur J Appl Physiol; 2012 Jul; 112(7):2539-47. PubMed ID: 22075643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-unit variability in two ParvoMedics TrueOne 2400 automated metabolic gas analysis systems.
    Macfarlane DJ; Wu HL
    Eur J Appl Physiol; 2013 Mar; 113(3):753-62. PubMed ID: 22945269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. System of automated gas-exchange analysis for the investigation of metabolic processes.
    Miodownik S; Carlon VA; Ferri E; Burda B; Melendez JA
    J Appl Physiol (1985); 2000 Jul; 89(1):373-8. PubMed ID: 10904074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of oxygen uptake in the non-steady-state.
    Powers SK; Lawler J; Thompson D; Beadle R
    Aviat Space Environ Med; 1987 Apr; 58(4):323-7. PubMed ID: 3579818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of metabolic rate in hyperoxia.
    Welch HG; Pedersen PK
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Sep; 51(3):725-31. PubMed ID: 7327974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Respiratory gas exchange. Anesthesia with enflurane or isoflurane in nitrous oxide during spontaneous and controlled ventilation].
    Bengtson JP; Arnestad JP; Bengtsson J; Bengtsson A; Stenqvist O
    Anaesthesist; 1993 May; 42(5):273-9. PubMed ID: 8317683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of the Cosmed K5 portable calorimeter.
    Crouter SE; LaMunion SR; Hibbing PR; Kaplan AS; Bassett DR
    PLoS One; 2019; 14(12):e0226290. PubMed ID: 31841537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a new mixing chamber system for breath-by-breath indirect calorimetry.
    Kim DY; Robergs RA
    Appl Physiol Nutr Metab; 2012 Feb; 37(1):157-66. PubMed ID: 22300357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CPX/D underestimates VO(2) in athletes compared with an automated Douglas bag system.
    Gore CJ; Clark RJ; Shipp NJ; Van Der Ploeg GE; Withers RT
    Med Sci Sports Exerc; 2003 Aug; 35(8):1341-7. PubMed ID: 12900688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of caffeine on the kinetics of O2 uptake, CO2 production and expiratory ventilation in humans during the on-transient of moderate and heavy intensity exercise.
    Bell C; Kowalchuk JM; Paterson DH; Scheuermann BW; Cunningham DA
    Exp Physiol; 1999 Jul; 84(4):761-74. PubMed ID: 10481232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of inspired CO₂ on the ventilatory response to high intensity exercise.
    Fan JL; Leiggener C; Rey F; Kayser B
    Respir Physiol Neurobiol; 2012 Mar; 180(2-3):283-8. PubMed ID: 22198479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a system for measurement of metabolic gas exchange during anaesthesia with controlled ventilation in an oxygen consuming lung model.
    Svensson KL; Sonander HG; Stenqvist O
    Br J Anaesth; 1990 Mar; 64(3):311-9. PubMed ID: 2328180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of 3% CO2 inhalation on respiratory exchange ratio and cardiac output during constant work-rate exercise.
    Kato T; Matsumoto T; Yamashiro SM
    J Sports Med Phys Fitness; 2021 Feb; 61(2):175-182. PubMed ID: 32734753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Moxus Modular metabolic system evaluated with two sensors for ventilation against the Douglas bag method.
    Rosdahl H; Lindberg T; Edin F; Nilsson J
    Eur J Appl Physiol; 2013 May; 113(5):1353-67. PubMed ID: 23224357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Expiratory ventilation and carbon dioxide production measured with a thermistor flow-through system].
    Nagashima T
    Nihon Kyobu Shikkan Gakkai Zasshi; 1996 Mar; 34(3):281-9. PubMed ID: 8778467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hypoxia and hyperoxia on ventilatory kinetics during recovery from exercise.
    Garner RP; Powers SK; Church G
    Aviat Space Environ Med; 1986 Dec; 57(12 Pt 1):1165-9. PubMed ID: 3099742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.