BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 11408456)

  • 1. Validity of estimating limb muscle volume by bioelectrical impedance.
    Miyatani M; Kanehisa H; Masuo Y; Ito M; Fukunaga T
    J Appl Physiol (1985); 2001 Jul; 91(1):386-94. PubMed ID: 11408456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validity of bioelectrical impedance and ultrasonographic methods for estimating the muscle volume of the upper arm.
    Miyatani M; Kanehisa H; Fukunaga T
    Eur J Appl Physiol; 2000 Aug; 82(5-6):391-6. PubMed ID: 10985592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling upper and lower limb muscle volume by bioelectrical impedance analysis.
    Stahn A; Terblanche E; Strobel G
    J Appl Physiol (1985); 2007 Oct; 103(4):1428-35. PubMed ID: 17626831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of single- or multifrequency bioelectrical impedance analysis and spectroscopy for assessment of appendicular skeletal muscle in the elderly.
    Yamada Y; Watanabe Y; Ikenaga M; Yokoyama K; Yoshida T; Morimoto T; Kimura M
    J Appl Physiol (1985); 2013 Sep; 115(6):812-8. PubMed ID: 23813532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle strength and size balances between reciprocal muscle groups in the thigh and lower leg for young men.
    Akagi R; Tohdoh Y; Takahashi H
    Int J Sports Med; 2012 May; 33(5):386-9. PubMed ID: 22377952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applicability of a segmental bioelectrical impedance analysis for predicting the whole body skeletal muscle volume.
    Tanaka NI; Miyatani M; Masuo Y; Fukunaga T; Kanehisa H
    J Appl Physiol (1985); 2007 Nov; 103(5):1688-95. PubMed ID: 17761792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishing a new index of muscle cross-sectional area and its relationship with isometric muscle strength.
    Akagi R; Kanehisa H; Kawakami Y; Fukunaga T
    J Strength Cond Res; 2008 Jan; 22(1):82-7. PubMed ID: 18296959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of thigh muscle cross-sectional area by single- and multifrequency segmental bioelectrical impedance analysis in the elderly.
    Yamada Y; Ikenaga M; Takeda N; Morimura K; Miyoshi N; Kiyonaga A; Kimura M; Higaki Y; Tanaka H;
    J Appl Physiol (1985); 2014 Jan; 116(2):176-82. PubMed ID: 24114698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strength and cross-sectional areas of reciprocal muscle groups in the upper arm and thigh during adolescence.
    Kanehisa H; Ikegawa S; Tsunoda N; Fukunaga T
    Int J Sports Med; 1995 Jan; 16(1):54-60. PubMed ID: 7713632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting composition of leg sections with anthropometry and bioelectrical impedance analysis, using magnetic resonance imaging as reference.
    Fuller NJ; Hardingham CR; Graves M; Screaton N; Dixon AK; Ward LC; Elia M
    Clin Sci (Lond); 1999 Jun; 96(6):647-57. PubMed ID: 10334971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating thigh skeletal muscle volume using multi-frequency segmental-bioelectrical impedance analysis.
    Taniguchi M; Yamada Y; Yagi M; Nakai R; Tateuchi H; Ichihashi N
    J Physiol Anthropol; 2021 Sep; 40(1):13. PubMed ID: 34593041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of segmental muscle volume by bioelectrical impedance spectroscopy.
    Bartok C; Schoeller DA
    J Appl Physiol (1985); 2004 Jan; 96(1):161-6. PubMed ID: 14506096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strength and size ratios between reciprocal muscle groups in the thigh and lower leg of male collegiate soccer players.
    Akagi R; Tohdoh Y; Takahashi H
    Clin Physiol Funct Imaging; 2014 Mar; 34(2):121-5. PubMed ID: 23865492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contractile muscle volume and agonist-antagonist coactivation account for differences in torque between young and older women.
    Macaluso A; Nimmo MA; Foster JE; Cockburn M; McMillan NC; De Vito G
    Muscle Nerve; 2002 Jun; 25(6):858-63. PubMed ID: 12115975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association between contraction-induced increases in elbow flexor muscle thickness and distal biceps brachii tendon moment arm depends on the muscle thickness measurement site.
    Akagi R; Iwanuma S; Hashizume S; Kanehisa H; Yanai T; Kawakami Y
    J Appl Biomech; 2014 Feb; 30(1):134-9. PubMed ID: 24676520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction interference between arm and leg: division of attention through muscle force regulation.
    Takebayashi H; Yagi F; Miyamoto K; Morioka S; Miyamoto S; Takuma Y; Inoue Y; Okabe T; Takimoto K
    Hum Mov Sci; 2009 Dec; 28(6):752-9. PubMed ID: 19700214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voluntary and electrically evoked strength characteristics of obese and nonobese preadolescent boys.
    Blimkie CJ; Ebbesen B; MacDougall D; Bar-Or O; Sale D
    Hum Biol; 1989 Aug; 61(4):515-32. PubMed ID: 2591911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle development in healthy children evaluated by bioelectrical impedance analysis.
    Uchiyama T; Nakayama T; Kuru S
    Brain Dev; 2017 Feb; 39(2):122-129. PubMed ID: 27665028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle volume compared to cross-sectional area is more appropriate for evaluating muscle strength in young and elderly individuals.
    Akagi R; Takai Y; Ohta M; Kanehisa H; Kawakami Y; Fukunaga T
    Age Ageing; 2009 Sep; 38(5):564-9. PubMed ID: 19596739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between muscle strength and indices of muscle cross-sectional area determined during maximal voluntary contraction in middle-aged and elderly individuals.
    Akagi R; Takai Y; Kato E; Fukuda M; Wakahara T; Ohta M; Kanehisa H; Kawakami Y; Fukunaga T
    J Strength Cond Res; 2009 Jul; 23(4):1258-62. PubMed ID: 19528863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.