These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 11408486)

  • 41. Synergistic operation of the CAR2 (Ornithine transaminase) promoter elements in Saccharomyces cerevisiae.
    Park HD; Scott S; Rai R; Dorrington R; Cooper TG
    J Bacteriol; 1999 Nov; 181(22):7052-64. PubMed ID: 10559172
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein.
    Baxa U; Speransky V; Steven AC; Wickner RB
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5253-60. PubMed ID: 11959975
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Retrograde response to mitochondrial dysfunction is separable from TOR1/2 regulation of retrograde gene expression.
    Giannattasio S; Liu Z; Thornton J; Butow RA
    J Biol Chem; 2005 Dec; 280(52):42528-35. PubMed ID: 16253991
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure of the globular region of the prion protein Ure2 from the yeast Saccharomyces cerevisiae.
    Bousset L; Belrhali H; Janin J; Melki R; Morera S
    Structure; 2001 Jan; 9(1):39-46. PubMed ID: 11342133
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors.
    Kuruvilla FG; Shamji AF; Schreiber SL
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7283-8. PubMed ID: 11416207
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rapamycin treatment results in GATA factor-independent hyperphosphorylation of the proline utilization pathway activator in Saccharomyces cerevisiae.
    Saxena D; Kannan KB; Brandriss MC
    Eukaryot Cell; 2003 Jun; 2(3):552-9. PubMed ID: 12796300
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors.
    Beck T; Hall MN
    Nature; 1999 Dec; 402(6762):689-92. PubMed ID: 10604478
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sit4 and PP2A Dephosphorylate Nitrogen Catabolite Repression-Sensitive Gln3 When TorC1 Is Up- as Well as Downregulated.
    Tate JJ; Tolley EA; Cooper TG
    Genetics; 2019 Aug; 212(4):1205-1225. PubMed ID: 31213504
    [No Abstract]   [Full Text] [Related]  

  • 49. Crystal structures of the yeast prion Ure2p functional region in complex with glutathione and related compounds.
    Bousset L; Belrhali H; Melki R; Morera S
    Biochemistry; 2001 Nov; 40(45):13564-73. PubMed ID: 11695904
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae.
    Tate JJ; Georis I; Dubois E; Cooper TG
    J Biol Chem; 2010 Jun; 285(23):17880-95. PubMed ID: 20378536
    [TBL] [Abstract][Full Text] [Related]  

  • 51.
    Edskes HK; Mukhamedova M; Edskes BK; Wickner RB
    Genetics; 2018 Jul; 209(3):789-800. PubMed ID: 29769283
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A co-activator of nitrogen-regulated transcription in Saccharomyces cerevisiae.
    Soussi-Boudekou S; André B
    Mol Microbiol; 1999 Feb; 31(3):753-62. PubMed ID: 10048020
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NBP1 (Nap1 binding protein 1), an essential gene for G2/M transition of Saccharomyces cerevisiae, encodes a protein of distinct sub-nuclear localization.
    Shimizu Y; Akashi T; Okuda A; Kikuchi A; Fukui K
    Gene; 2000 Apr; 246(1-2):395-404. PubMed ID: 10767562
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The protein-only theory and the yeast Saccharomyces cerevisiae: the prions and the propagons.
    Fernandez-Bellot E; Cullin C
    Cell Mol Life Sci; 2001 Nov; 58(12-13):1857-78. PubMed ID: 11766884
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae.
    DeVit MJ; Johnston M
    Curr Biol; 1999 Nov; 9(21):1231-41. PubMed ID: 10556086
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae.
    Talibi D; Grenson M; André B
    Nucleic Acids Res; 1995 Feb; 23(4):550-7. PubMed ID: 7899074
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae.
    Soussi-Boudekou S; Vissers S; Urrestarazu A; Jauniaux JC; André B
    Mol Microbiol; 1997 Mar; 23(6):1157-68. PubMed ID: 9106207
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A family of ammonium transporters in Saccharomyces cerevisiae.
    Marini AM; Soussi-Boudekou S; Vissers S; Andre B
    Mol Cell Biol; 1997 Aug; 17(8):4282-93. PubMed ID: 9234685
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intranuclear function for protein phosphatase 2A: Pph21 and Pph22 are required for rapamycin-induced GATA factor binding to the DAL5 promoter in yeast.
    Georis I; Tate JJ; Feller A; Cooper TG; Dubois E
    Mol Cell Biol; 2011 Jan; 31(1):92-104. PubMed ID: 20974806
    [TBL] [Abstract][Full Text] [Related]  

  • 60. NCR-sensitive transport gene expression in S. cerevisiae is controlled by a branched regulatory pathway consisting of multiple NCR-responsive activator proteins.
    Coffman J; Rai R; Cunningham T; Svetlov V; Cooper TG
    Folia Microbiol (Praha); 1996; 41(1):85-6. PubMed ID: 9090830
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.