BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11409465)

  • 21. Bending of purple membranes in dependence on the pH analyzed by AFM and single molecule force spectroscopy.
    Baumann RP; Schranz M; Hampp N
    Phys Chem Chem Phys; 2010 May; 12(17):4329-35. PubMed ID: 20407703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resonance Raman spectra of bacteriorhodopsin mutants with substitutions at Asp-85, Asp-96, and Arg-82.
    Lin SW; Fodor SP; Miercke LJ; Shand RF; Betlach MC; Stroud RM; Mathies RA
    Photochem Photobiol; 1991 Mar; 53(3):341-6. PubMed ID: 2062880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for the rate of the final step in the bacteriorhodopsin photocycle being controlled by the proton release group: R134H mutant.
    Lu M; Balashov SP; Ebrey TG; Chen N; Chen Y; Menick DR; Crouch RK
    Biochemistry; 2000 Mar; 39(9):2325-31. PubMed ID: 10694399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arginine-82 regulates the pKa of the group responsible for the light-driven proton release in bacteriorhodopsin.
    Govindjee R; Misra S; Balashov SP; Ebrey TG; Crouch RK; Menick DR
    Biophys J; 1996 Aug; 71(2):1011-23. PubMed ID: 8842238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhomogeneous stability of bacteriorhodopsin in purple membrane against photobleaching at high temperature.
    Yokoyama Y; Sonoyama M; Mitaku S
    Proteins; 2004 Feb; 54(3):442-54. PubMed ID: 14747993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimated acid dissociation constants of the Schiff base, Asp-85, and Arg-82 during the bacteriorhodopsin photocycle.
    Brown LS; Bonet L; Needleman R; Lanyi JK
    Biophys J; 1993 Jul; 65(1):124-30. PubMed ID: 8369421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-dimensional crystallization of Escherichia coli-expressed bacteriorhodopsin and its D96N variant: high resolution structural studies in projection.
    Mitra AK; Miercke LJ; Turner GJ; Shand RF; Betlach MC; Stroud RM
    Biophys J; 1993 Sep; 65(3):1295-306. PubMed ID: 8241409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein conformational changes in the bacteriorhodopsin photocycle.
    Subramaniam S; Lindahl M; Bullough P; Faruqi AR; Tittor J; Oesterhelt D; Brown L; Lanyi J; Henderson R
    J Mol Biol; 1999 Mar; 287(1):145-61. PubMed ID: 10074413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The reaction of hydroxylamine with bacteriorhodopsin studied with mutants that have altered photocycles: selective reactivity of different photointermediates.
    Subramaniam S; Marti T; Rösselet SJ; Rothschild KJ; Khorana HG
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2583-7. PubMed ID: 2006195
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoelectric response of the N intermediate of bacteriorhodopsin and its mutant T46V.
    Tóth-Boconádi R; Szabó-Nagy A; Taneva SG; Keszthelyi L
    FEBS Lett; 1999 Oct; 459(1):5-8. PubMed ID: 10508907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient approach to determine the pK(a) of the proton release complex in the photocycle of retinal proteins.
    Wu J; Ma D; Wang Y; Ming M; Balashov SP; Ding J
    J Phys Chem B; 2009 Apr; 113(13):4482-91. PubMed ID: 19281200
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intramolecular charge transfer in the bacteriorhodopsin mutants Asp85-->Asn and Asp212-->Asn: effects of pH and anions.
    Moltke S; Krebs MP; Mollaaghababa R; Khorana HG; Heyn MP
    Biophys J; 1995 Nov; 69(5):2074-83. PubMed ID: 8580351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. X-ray diffraction of a cysteine-containing bacteriorhodopsin mutant and its mercury derivative. Localization of an amino acid residue in the loop of an integral membrane protein.
    Krebs MP; Behrens W; Mollaaghababa R; Khorana HG; Heyn MP
    Biochemistry; 1993 Nov; 32(47):12830-4. PubMed ID: 8251504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Origins of deuterium kinetic isotope effects on the proton transfers of the bacteriorhodopsin photocycle.
    Brown LS; Needleman R; Lanyi JK
    Biochemistry; 2000 Feb; 39(5):938-45. PubMed ID: 10653637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The molecular motion of bacteriorhodopsin mutant D96N in the purple membrane.
    Kikukawa T; Araiso T; Mukasa K; Shimozawa T; Kamo N
    FEBS Lett; 1995 Dec; 377(3):502-4. PubMed ID: 8549785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrooptical measurements on purple membrane containing bacteriorhodopsin mutants.
    Mostafa HI; Váró G; Tóth-Boconádi R; Dér A; Keszthelyi L
    Biophys J; 1996 Jan; 70(1):468-72. PubMed ID: 8770223
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Picosecond multidimensional fluorescence spectroscopy: a tool to measure real-time protein dynamics during function.
    Kim TY; Winkler K; Alexiev U
    Photochem Photobiol; 2007; 83(2):378-84. PubMed ID: 17117889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of bacteriorhodopsin for bioelectronic devices.
    Wise KJ; Gillespie NB; Stuart JA; Krebs MP; Birge RR
    Trends Biotechnol; 2002 Sep; 20(9):387-94. PubMed ID: 12175770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for charge-controlled conformational changes in the photocycle of bacteriorhodopsin.
    Sass HJ; Gessenich R; Koch MH; Oesterhelt D; Dencher NA; Büldt G; Rapp G
    Biophys J; 1998 Jul; 75(1):399-405. PubMed ID: 9649397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.