These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11409499)

  • 1. The effect of limited aeration on swine manure phosphorus removal.
    Zhu J; Luo A; Ndegwa PM
    J Environ Sci Health B; 2001 Mar; 36(2):209-18. PubMed ID: 11409499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological and chemical phosphorus fractionalization in swine manure under aeration.
    Wu X; Yao W; Zhu J; Miller C
    J Environ Sci Health B; 2010 May; 45(4):293-9. PubMed ID: 20408005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of temperature and time on phosphorus removal in swine manure during batch aeration.
    Ndegwa PM; Zhu J; Luo A
    J Environ Sci Health B; 2003 Jan; 38(1):73-87. PubMed ID: 12602825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation.
    Yetilmezsoy K; Sakar S
    J Hazard Mater; 2008 Mar; 151(2-3):547-58. PubMed ID: 17643817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of pathogen and indicator microorganisms from liquid swine manure in multi-step biological and chemical treatment.
    Vanotti MB; Millner PD; Hunt PG; Ellison AQ
    Bioresour Technol; 2005 Jan; 96(2):209-14. PubMed ID: 15381218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen removal from sewage by continuous flow SBR system with intermittent aeration.
    Chen AC; Chang JS; Yang L; Yang YH
    Environ Technol; 2001 May; 22(5):553-9. PubMed ID: 11424732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of nitrogen and phosphorus from swine wastewater by intermittent aeration processes.
    Liao CM; Maekawa T; Chiang HC; Wu CF
    J Environ Sci Health B; 1993 Jun; 28(3):335-74. PubMed ID: 8514970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reformed SBR technology integrated with two-step feeding and low-intensity aeration for swine wastewater treatment.
    Lu L; Zhang S; Li H; Wang Z; Li J; Zhang Z; Zhu J
    Environ Technol; 2009 Mar; 30(3):251-60. PubMed ID: 19438057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia.
    González C; Marciniak J; Villaverde S; León C; García PA; Muñoz R
    Water Sci Technol; 2008; 58(1):95-102. PubMed ID: 18653942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swine wastewater treatment using attached-growth and suspended-growth two stage sequencing batch reactors with real-time control.
    Cheng N; Lo KV; Yip KH
    J Environ Sci Health B; 2001 Mar; 36(2):189-207. PubMed ID: 11409498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ammonia stripping of biologically treated liquid manure.
    Alitalo A; Kyrö A; Aura E
    J Environ Qual; 2012; 41(1):273-80. PubMed ID: 22218195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of phosphorus from livestock effluents.
    Szogi AA; Vanotti MB
    J Environ Qual; 2009; 38(2):576-86. PubMed ID: 19202028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of phosphorus precipitation from swine manure slurries to enhance recovery.
    Burns RT; Moody LB; Celen I; Buchanan JR
    Water Sci Technol; 2003; 48(1):139-46. PubMed ID: 12926630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen and phosphorus removal from swine wastewater by intermittently aerated dynamic-flow system.
    Hur HW; Park SK; Chung KY; Kang H; Lee SI
    Water Sci Technol; 2004; 49(5-6):367-72. PubMed ID: 15137446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time treatment of dairy manure: implications of oxidation reduction potential regimes to nutrient management strategies.
    Qureshi A; Lo KV; Liao PH; Mavinic DS
    Bioresour Technol; 2008 Mar; 99(5):1169-76. PubMed ID: 17467983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined UASB reactor and DAF/BF/anoxic/aerobic process for the removal of high-concentration organic matter and nutrients from slurry-type swine waste.
    Kim BU; Won CH; Rim JM
    Water Sci Technol; 2004; 49(5-6):199-205. PubMed ID: 15137424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus removal from anaerobically digested swine wastewater through struvite precipitation.
    Jordaan EM; Ackerman J; Cicek N
    Water Sci Technol; 2010; 61(12):3228-34. PubMed ID: 20555221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater.
    Obaja D; Macé S; Mata-Alvarez J
    Bioresour Technol; 2005 Jan; 96(1):7-14. PubMed ID: 15364074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of aeration and non-aeration time on simultaneous organic, nitrogen and phosphorus removal using an intermittent aeration membrane bioreactor.
    Ujang Z; Salim MR; Khor SL
    Water Sci Technol; 2002; 46(9):193-200. PubMed ID: 12448469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-step biological process for the treatment of the liquid fraction of cattle manure.
    Marañón E; Castrillón L; García L; Vázquez I; Fernández-Nava Y
    Bioresour Technol; 2008 Nov; 99(16):7750-7. PubMed ID: 18394883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.