These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 11409623)
1. Stenotherms at sub-zero temperatures: thermal dependence of swimming performance in Antarctic fish. Wilson RS; Franklin CE; Davison W; Kraft P J Comp Physiol B; 2001 May; 171(4):263-9. PubMed ID: 11409623 [TBL] [Abstract][Full Text] [Related]
2. Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki. Franklin CE; Davison W; Seebacher F J Exp Biol; 2007 Sep; 210(Pt 17):3068-74. PubMed ID: 17704081 [TBL] [Abstract][Full Text] [Related]
3. Cardiovascular responses of the red-blooded antarctic fishes Pagothenia bernacchii and P. borchgrevinki. Axelsson M; Davison W; Forster ME; Farrell AP J Exp Biol; 1992 Jun; 167():179-201. PubMed ID: 1634863 [TBL] [Abstract][Full Text] [Related]
4. Influences of thermal acclimation and acute temperature change on the motility of epithelial wound-healing cells (keratocytes) of tropical, temperate and Antarctic fish. Ream RA; Theriot JA; Somero GN J Exp Biol; 2003 Dec; 206(Pt 24):4539-51. PubMed ID: 14610038 [TBL] [Abstract][Full Text] [Related]
5. Thermal acclimation of locomotor performance in tadpoles and adults of the aquatic frog Xenopus laevis. Wilson RS; James RS; Johnston IA J Comp Physiol B; 2000 Mar; 170(2):117-24. PubMed ID: 10791571 [TBL] [Abstract][Full Text] [Related]
6. An intertidal fish shows thermal acclimation despite living in a rapidly fluctuating environment. da Silva CRB; Riginos C; Wilson RS J Comp Physiol B; 2019 Aug; 189(3-4):385-398. PubMed ID: 30874900 [TBL] [Abstract][Full Text] [Related]
7. Temperature dependence of neurotransmitter release in the antarctic fish Pagothenia borchgrevinki. Pockett S; Macdonald JA Experientia; 1986 Apr; 42(4):414-5. PubMed ID: 2869970 [TBL] [Abstract][Full Text] [Related]
8. Acclimation and thermal tolerance in Antarctic marine ectotherms. Peck LS; Morley SA; Richard J; Clark MS J Exp Biol; 2014 Jan; 217(Pt 1):16-22. PubMed ID: 24353200 [TBL] [Abstract][Full Text] [Related]
9. A falsification of the thermal specialization paradigm: compensation for elevated temperatures in Antarctic fishes. Seebacher F; Davison W; Lowe CJ; Franklin CE Biol Lett; 2005 Jun; 1(2):151-4. PubMed ID: 17148152 [TBL] [Abstract][Full Text] [Related]
10. Effect of elevated temperature on membrane lipid saturation in Antarctic notothenioid fish. Malekar VC; Morton JD; Hider RN; Cruickshank RH; Hodge S; Metcalf VJ PeerJ; 2018; 6():e4765. PubMed ID: 29796342 [TBL] [Abstract][Full Text] [Related]
11. Plastic responses to diel thermal variation in juvenile green sturgeon, Acipenser medirostris. Rodgers EM; Cocherell DE; Nguyen TX; Todgham AE; Fangue NA J Therm Biol; 2018 Aug; 76():147-155. PubMed ID: 30143289 [TBL] [Abstract][Full Text] [Related]
12. Studies of evolutionary temperature adaptation: muscle function and locomotor performance in Antarctic fish. Franklin CE Clin Exp Pharmacol Physiol; 1998 Sep; 25(9):753-6. PubMed ID: 9750970 [TBL] [Abstract][Full Text] [Related]
13. The effects of constant and diel-fluctuating temperature acclimation on the thermal tolerance, swimming capacity, specific dynamic action and growth performance of juvenile Chinese bream. Peng J; Cao ZD; Fu SJ Comp Biochem Physiol A Mol Integr Physiol; 2014 Oct; 176():32-40. PubMed ID: 25026540 [TBL] [Abstract][Full Text] [Related]
14. Thermal acclimation effects differ between voluntary, maximum, and critical swimming velocities in two cyprinid fishes. O'Steen S; Bennett AF Physiol Biochem Zool; 2003; 76(4):484-96. PubMed ID: 13130428 [TBL] [Abstract][Full Text] [Related]
15. The metabolism and swimming performance of sheepshead minnows (Cyprinodon variegatus) following thermal acclimation or acute thermal exposure. Kirby AR; Crossley DA; Mager EM J Comp Physiol B; 2020 Sep; 190(5):557-568. PubMed ID: 32671461 [TBL] [Abstract][Full Text] [Related]
16. Understanding the Metabolic Capacity of Antarctic Fishes to Acclimate to Future Ocean Conditions. Todgham AE; Mandic M Integr Comp Biol; 2020 Dec; 60(6):1425-1437. PubMed ID: 32814956 [TBL] [Abstract][Full Text] [Related]
17. The effect of temperature adaptation on the ubiquitin-proteasome pathway in notothenioid fishes. Todgham AE; Crombie TA; Hofmann GE J Exp Biol; 2017 Feb; 220(Pt 3):369-378. PubMed ID: 27872216 [TBL] [Abstract][Full Text] [Related]
18. Is cold the new hot? Elevated ubiquitin-conjugated protein levels in tissues of Antarctic fish as evidence for cold-denaturation of proteins in vivo. Todgham AE; Hoaglund EA; Hofmann GE J Comp Physiol B; 2007 Nov; 177(8):857-66. PubMed ID: 17710411 [TBL] [Abstract][Full Text] [Related]
19. Thermal sensitivity of heart rate and insensitivity of blood pressure in the Antarctic nototheniid fish Pagothenia borchgrevinki. Lowe CJ; Seebacher F; Davison W J Comp Physiol B; 2005 Feb; 175(2):97-105. PubMed ID: 15602656 [TBL] [Abstract][Full Text] [Related]
20. Red muscle function and thermal acclimation to cold in rainbow smelt, Osmerus mordax, and rainbow trout, Oncorhynchus mykiss. Shuman JL; Coughlin DJ J Exp Zool A Ecol Integr Physiol; 2018 Dec; 329(10):547-556. PubMed ID: 30101480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]