These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 11409968)
1. Broad-spectrum antimicrobial activity in vitro of the synthetic peptide D4E1. Rajasekaran K; Stromberg KD; Cary JW; Cleveland TE J Agric Food Chem; 2001 Jun; 49(6):2799-803. PubMed ID: 11409968 [TBL] [Abstract][Full Text] [Related]
2. Broad-Spectrum Antimicrobial Activity of Synthetic Peptides GV185 and GV187. Sweany RR; Cary JW; Jaynes JM; Rajasekaran K Plant Dis; 2023 Oct; 107(10):3211-3221. PubMed ID: 36947838 [TBL] [Abstract][Full Text] [Related]
3. Fungicidal properties, sterol binding, and proteolytic resistance of the synthetic peptide D4E1. De Lucca AJ; Bland JM; Grimm C; Jacks TJ; Cary JW; Jaynes JM; Cleveland TE; Walsh TJ Can J Microbiol; 1998 Jun; 44(6):514-20. PubMed ID: 9734302 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of fungal and bacterial plant pathogens by synthetic peptides: in vitro growth inhibition, interaction between peptides and inhibition of disease progression. Ali GS; Reddy AS Mol Plant Microbe Interact; 2000 Aug; 13(8):847-59. PubMed ID: 10939256 [TBL] [Abstract][Full Text] [Related]
5. Antimicrobial activity of glycosidase inhibitory protein isolated from Cyphomandra betacea Sendt. fruit. Ordóñez RM; Ordóñez AA; Sayago JE; Nieva Moreno MI; Isla MI Peptides; 2006 Jun; 27(6):1187-91. PubMed ID: 16406143 [TBL] [Abstract][Full Text] [Related]
6. Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Rajasekaran K; Cary JW; Jaynes JM; Cleveland TE Plant Biotechnol J; 2005 Nov; 3(6):545-54. PubMed ID: 17147626 [TBL] [Abstract][Full Text] [Related]
7. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. DeGray G; Rajasekaran K; Smith F; Sanford J; Daniell H Plant Physiol; 2001 Nov; 127(3):852-62. PubMed ID: 11706168 [TBL] [Abstract][Full Text] [Related]
8. Antimicrobial constituents of the leaves of Mikania micrantha H. B. K. Li Y; Li J; Li Y; Wang XX; Cao AC PLoS One; 2013; 8(10):e76725. PubMed ID: 24098556 [TBL] [Abstract][Full Text] [Related]
9. A Single-Step Purification of Cauliflower Lysozyme and Its Dual Role Against Bacterial and Fungal Plant Pathogens. Manikandan M; Balasubramaniam R; Chun SC Appl Biochem Biotechnol; 2015 Sep; 177(2):556-66. PubMed ID: 26208688 [TBL] [Abstract][Full Text] [Related]
10. Sensitivity of bacterial and fungal plant pathogens to the lytic peptides, MSI-99, magainin II, and cecropin B. Alan AR; Earle ED Mol Plant Microbe Interact; 2002 Jul; 15(7):701-8. PubMed ID: 12118886 [TBL] [Abstract][Full Text] [Related]
11. An In Vitro Attempt for Controlling Severe Phytopathogens and Human Pathogens Using Essential Oils from Mediterranean Plants of Genus Schinus. Elshafie HS; Ghanney N; Mang SM; Ferchichi A; Camele I J Med Food; 2016 Mar; 19(3):266-73. PubMed ID: 26836214 [TBL] [Abstract][Full Text] [Related]
12. Antifungal and antimicrobial proteins and peptides of potato (Solanum tuberosum L.) tubers and their applications. Bártová V; Bárta J; Jarošová M Appl Microbiol Biotechnol; 2019 Jul; 103(14):5533-5547. PubMed ID: 31144014 [TBL] [Abstract][Full Text] [Related]
13. Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Cary JW; Rajasekaran1 K; Jaynes JM; Cleveland TE Plant Sci; 2000 May; 154(2):171-181. PubMed ID: 10729616 [TBL] [Abstract][Full Text] [Related]
14. Antimicrobial Activity and Chemical Composition of Three Essential Oils Extracted from Mediterranean Aromatic Plants. Elshafie HS; Sakr S; Mang SM; Belviso S; De Feo V; Camele I J Med Food; 2016 Nov; 19(11):1096-1103. PubMed ID: 27792456 [TBL] [Abstract][Full Text] [Related]
15. A transient expression assay for the in planta efficacy screening of an antimicrobial peptide against grapevine bacterial pathogens. Visser M; Stephan D; Jaynes JM; Burger JT Lett Appl Microbiol; 2012 Jun; 54(6):543-51. PubMed ID: 22435990 [TBL] [Abstract][Full Text] [Related]
16. In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. Xu Y; Gao C; Li X; He Y; Zhou L; Pang G; Sun S J Ocul Pharmacol Ther; 2013 Mar; 29(2):270-4. PubMed ID: 23410063 [TBL] [Abstract][Full Text] [Related]
17. Production of an engineered killer peptide in Nicotiana benthamiana by using a potato virus X expression system. Donini M; Lico C; Baschieri S; Conti S; Magliani W; Polonelli L; Benvenuto E Appl Environ Microbiol; 2005 Oct; 71(10):6360-7. PubMed ID: 16204558 [TBL] [Abstract][Full Text] [Related]
18. Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Mentag R; Luckevich M; Morency MJ; Séguin A Tree Physiol; 2003 Apr; 23(6):405-11. PubMed ID: 12642242 [TBL] [Abstract][Full Text] [Related]
19. Identification of antimicrobial metabolites produced by a potential biocontrol Actinomycete strain A217. He H; Hao X; Zhou W; Shi N; Feng J; Han L J Appl Microbiol; 2020 Apr; 128(4):1143-1152. PubMed ID: 31830360 [TBL] [Abstract][Full Text] [Related]
20. Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Hwang BK; Lim SW; Kim BS; Lee JY; Moon SS Appl Environ Microbiol; 2001 Aug; 67(8):3739-45. PubMed ID: 11472958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]