BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11409992)

  • 21. Subcellular localization of vanillyl-alcohol oxidase in Penicillium simplicissimum.
    Fraaije MW; Sjollema KA; Veenhuis M; van Berkel WJ
    FEBS Lett; 1998 Jan; 422(1):65-8. PubMed ID: 9475171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient Biosynthesis of Vanillin from Isoeugenol by Recombinant Isoeugenol Monooxygenase from Pseudomonas nitroreducens Jin1.
    Wang Q; Wu X; Lu X; He Y; Ma B; Xu Y
    Appl Biochem Biotechnol; 2021 Apr; 193(4):1116-1128. PubMed ID: 33411131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanochemical Synthesis of CuO/MgAl
    Rahmanivahid B; Pinilla-de Dios M; Haghighi M; Luque R
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31319493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Therapeutic Potential of Vanillin and its Main Metabolites to Regulate the Inflammatory Response and Oxidative Stress.
    Bezerra-Filho CSM; Barboza JN; Souza MTS; Sabry P; Ismail NSM; de Sousa DP
    Mini Rev Med Chem; 2019; 19(20):1681-1693. PubMed ID: 30864521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the origin of vanillyl alcohol oxidases.
    Gygli G; de Vries RP; van Berkel WJH
    Fungal Genet Biol; 2018 Jul; 116():24-32. PubMed ID: 29626635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deciphering the metabolic distribution of vanillin in Rhodococcus opacus during lignin valorization.
    Zhou H; Xu Z; Cai C; Li J; Jin M
    Bioresour Technol; 2022 Mar; 347():126348. PubMed ID: 34798253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic engineering of Pseudomonas putida for production of vanillylamine from lignin-derived substrates.
    Manfrão-Netto JHC; Lund F; Muratovska N; Larsson EM; Parachin NS; Carlquist M
    Microb Biotechnol; 2021 Nov; 14(6):2448-2462. PubMed ID: 33533574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direction of the reactivity of vanillyl-alcohol oxidase with 4-alkylphenols.
    van den Heuvel RH; Fraaije MW; van Berkel WJ
    FEBS Lett; 2000 Sep; 481(2):109-12. PubMed ID: 10996306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The growing VAO flavoprotein family.
    Leferink NG; Heuts DP; Fraaije MW; van Berkel WJ
    Arch Biochem Biophys; 2008 Jun; 474(2):292-301. PubMed ID: 18280246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A ternary complex of hydroxycinnamoyl-CoA hydratase-lyase (HCHL) with acetyl-CoA and vanillin gives insights into substrate specificity and mechanism.
    Bennett JP; Bertin L; Moulton B; Fairlamb IJ; Brzozowski AM; Walton NJ; Grogan G
    Biochem J; 2008 Sep; 414(2):281-9. PubMed ID: 18479250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases.
    Ewing TA; van Noord A; Paul CE; van Berkel WJH
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29342886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vanillin production from simple phenols by wine-associated lactic acid bacteria.
    Bloem A; Bertrand A; Lonvaud-Funel A; de Revel G
    Lett Appl Microbiol; 2007 Jan; 44(1):62-7. PubMed ID: 17209816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of Vine-Trimming Wastes as Carrier for Amycolatopsis sp. to Produce Vanillin, Vanillyl Alcohol, and Vanillic Acid.
    Castañón-Rodríguez JF; Pérez-Rodríguez N; de Souza Oliveira RP; Aguilar-Uscanga MG; Domínguez JM
    Curr Microbiol; 2016 Oct; 73(4):561-8. PubMed ID: 27431730
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regio- and stereospecific conversion of 4-alkylphenols by the covalent flavoprotein vanillyl-alcohol oxidase.
    van den Heuvel RH; Fraaije MW; Laane C; van Berkel WJ
    J Bacteriol; 1998 Nov; 180(21):5646-51. PubMed ID: 9791114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectroscopic studies on the photoreaction of choline oxidase, a flavoprotein, with covalently bound flavin.
    Ohta M; Miura R; Yamano T; Miyake Y
    J Biochem; 1983 Sep; 94(3):879-92. PubMed ID: 6417122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the factors affecting product distribution in laccase-catalyzed oxidation of a lignin model compound vanillyl alcohol: experimental and computational evaluation.
    Lahtinen M; Heinonen P; Oivanen M; Karhunen P; Kruus K; Sipilä J
    Org Biomol Chem; 2013 Sep; 11(33):5454-64. PubMed ID: 23851662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol.
    Plaggenborg R; Overhage J; Loos A; Archer JA; Lessard P; Sinskey AJ; Steinbüchel A; Priefert H
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):745-55. PubMed ID: 16421716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transportation mechanism for vanillin uptake through fungal plasma membrane.
    Shimizu M; Kobayashi Y; Tanaka H; Wariishi H
    Appl Microbiol Biotechnol; 2005 Sep; 68(5):673-9. PubMed ID: 15868144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and characterization of the vanillin dehydrogenase YfmT in Bacillus subtilis 3NA.
    Graf N; Wenzel M; Altenbuchner J
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3511-21. PubMed ID: 26658822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel vanillin derivatives: Synthesis, anti-oxidant, DNA and cellular protection properties.
    Scipioni M; Kay G; Megson I; Kong Thoo Lin P
    Eur J Med Chem; 2018 Jan; 143():745-754. PubMed ID: 29220795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.