These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11409992)

  • 41. Functional characterization of
    Kato Y; Nomura T
    Biochem Biophys Rep; 2024 Jul; 38():101692. PubMed ID: 38571553
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transglycosylation products generated by Talaromyces amestolkiae GH3 β-glucosidases: effect of hydroxytyrosol, vanillin and its glucosides on breast cancer cells.
    Méndez-Líter JA; Tundidor I; Nieto-Domínguez M; de Toro BF; González Santana A; de Eugenio LI; Prieto A; Asensio JL; Cañada FJ; Sánchez C; Martínez MJ
    Microb Cell Fact; 2019 May; 18(1):97. PubMed ID: 31151435
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of Amycolatopsis sp. HR167.
    Overhage J; Steinbüchel A; Priefert H
    J Biotechnol; 2006 Sep; 125(3):369-76. PubMed ID: 16677732
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biological valorization of lignin-derived vanillin to vanillylamine by recombinant E. coli expressing ω-transaminase and alanine dehydrogenase in a petroleum ether-water system.
    Li L; Ma C; Chai H; He YC
    Bioresour Technol; 2023 Oct; 385():129453. PubMed ID: 37406835
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biocatalytic synthesis of vanillin.
    Li T; Rosazza JP
    Appl Environ Microbiol; 2000 Feb; 66(2):684-7. PubMed ID: 10653736
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A three-enzyme-system to degrade curcumin to natural vanillin.
    Esparan V; Krings U; Struch M; Berger RG
    Molecules; 2015 Apr; 20(4):6640-53. PubMed ID: 25875042
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju.
    Bourbonnais R; Paice MG
    Biochem J; 1988 Oct; 255(2):445-50. PubMed ID: 3060110
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biotechnological production of vanillin using immobilized enzymes.
    Furuya T; Kuroiwa M; Kino K
    J Biotechnol; 2017 Feb; 243():25-28. PubMed ID: 28042012
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Engineering the activity and thermostability of a carboxylic acid reductase in the conversion of vanillic acid to vanillin.
    Ren Y; Qin Z; Li C; Yuan B; Yang Y; Qu G; Sun Z
    J Biotechnol; 2024 May; 386():19-27. PubMed ID: 38521166
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biocatalytic potential of vanillin aminotransferase from Capsicum chinense.
    Weber N; Ismail A; Gorwa-Grauslund M; Carlquist M
    BMC Biotechnol; 2014 Apr; 14():25. PubMed ID: 24712445
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-yield production of vanillin from ferulic acid by a coenzyme-independent decarboxylase/oxygenase two-stage process.
    Furuya T; Miura M; Kuroiwa M; Kino K
    N Biotechnol; 2015 May; 32(3):335-9. PubMed ID: 25765579
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New oxidase from Bjerkandera arthroconidial anamorph that oxidizes both phenolic and nonphenolic benzyl alcohols.
    Romero E; Ferreira P; Martínez AT; Martínez MJ
    Biochim Biophys Acta; 2009 Apr; 1794(4):689-97. PubMed ID: 19110079
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cobalt Nanoparticles Supported on Nitrogen-Doped Carbon: An Effective Non-Noble Metal Catalyst for the Upgrade of Biofuels.
    Jiang L; Zhou P; Liao C; Zhang Z; Jin S
    ChemSusChem; 2018 Mar; 11(5):959-964. PubMed ID: 29210205
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calculated ionisation potentials determine the oxidation of vanillin precursors by lignin peroxidase.
    ten Have R; Rietjens IM; Hartmans S; Swarts HJ; Field JA
    FEBS Lett; 1998 Jul; 430(3):390-2. PubMed ID: 9688577
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.
    Wang X; Liang Z; Hou J; Bao X; Shen Y
    BMC Biotechnol; 2016 Apr; 16():31. PubMed ID: 27036139
    [TBL] [Abstract][Full Text] [Related]  

  • 56. HKUST-1 as a Heterogeneous Catalyst for the Synthesis of Vanillin.
    Yépez R; Illescas JF; Gijón P; Sánchez-Sánchez M; González-Zamora E; Santillan R; Álvarez JR; Ibarra IA; Aguilar-Pliego J
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27501027
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sonochemical oxidation of vanillyl alcohol to vanillin in the presence of a cobalt oxide catalyst under mild conditions.
    Behling R; Chatel G; Valange S
    Ultrason Sonochem; 2017 May; 36():27-35. PubMed ID: 28069210
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vanillyl alcohol oxidase.
    Ewing TA; Gygli G; Fraaije MW; van Berkel WJH
    Enzymes; 2020; 47():87-116. PubMed ID: 32951836
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.
    Nguyen TT; Kitajima S; Izawa S
    J Biosci Bioeng; 2014 Sep; 118(3):263-9. PubMed ID: 24725964
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A single amino acid substitution alters the vanillylamine synthesis activity of Capsicum pAMT.
    Sano K; Nakasato S; Nagata K; Kobata K
    Biochem Biophys Res Commun; 2023 Nov; 680():86-92. PubMed ID: 37729777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.