These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 11410053)

  • 1. A fast algorithm for searching for molecules containing a pharmacophore in very large virtual combinatorial libraries.
    Olender R; Rosenfeld R
    J Chem Inf Comput Sci; 2001; 41(3):731-8. PubMed ID: 11410053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oriented substituent pharmacophore PRopErtY space (OSPPREYS): a substituent-based calculation that describes combinatorial library products better than the corresponding product-based calculation.
    Martin EJ; Hoeffel TJ
    J Mol Graph Model; 2000; 18(4-5):383-403. PubMed ID: 11143557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and screening of a polyketide virtual library for drug leads against a motilide pharmacophore.
    Siani MA; Skillman AG; Carreras CW; Ashley G; Kuntz ID; Santi DV
    J Mol Graph Model; 2000; 18(4-5):497-511, 539-40. PubMed ID: 11143565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing targeted libraries with genetic algorithms.
    Sheridan RP; SanFeliciano SG; Kearsley SK
    J Mol Graph Model; 2000; 18(4-5):320-34, 525. PubMed ID: 11143552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galileo: Three-dimensional searching in large combinatorial fragment spaces on the example of pharmacophores.
    Meyenburg C; Dolfus U; Briem H; Rarey M
    J Comput Aided Mol Des; 2023 Jan; 37(1):1-16. PubMed ID: 36418668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacophore identification, in silico screening, and virtual library design for inhibitors of the human factor Xa.
    Krovat EM; Frühwirth KH; Langer T
    J Chem Inf Model; 2005; 45(1):146-59. PubMed ID: 15667140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual Combinatorial Chemistry and Pharmacological Screening: A Short Guide to Drug Design.
    Suay-García B; Bueso-Bordils JI; Falcó A; Antón-Fos GM; Alemán-López PA
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of random sampling to virtual screening of combinatorial libraries.
    Beroza P; Bradley EK; Eksterowicz JE; Feinstein R; Greene J; Grootenhuis PD; Henne RM; Mount J; Shirley WA; Smellie A; Stanton RV; Spellmeyer DC
    J Mol Graph Model; 2000; 18(4-5):335-42. PubMed ID: 11143553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacophore modeling and three-dimensional database searching for drug design using catalyst.
    Kurogi Y; Güner OF
    Curr Med Chem; 2001 Jul; 8(9):1035-55. PubMed ID: 11472240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries.
    Lee ML; Schneider G
    J Comb Chem; 2001; 3(3):284-9. PubMed ID: 11350252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoinformatics - similarity and diversity in chemical libraries.
    Willett P
    Curr Opin Biotechnol; 2000 Feb; 11(1):85-8. PubMed ID: 10679335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.
    Duffy FJ; O'Donovan D; Devocelle M; Moran N; O'Connell DJ; Shields DC
    J Chem Inf Model; 2015 Mar; 55(3):600-13. PubMed ID: 25668361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel algorithms for the optimization of molecular diversity of combinatorial libraries.
    Waldman M; Li H; Hassan M
    J Mol Graph Model; 2000; 18(4-5):412-26, 533-6. PubMed ID: 11143559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel technologies for virtual screening.
    Lengauer T; Lemmen C; Rarey M; Zimmermann M
    Drug Discov Today; 2004 Jan; 9(1):27-34. PubMed ID: 14761803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Searching Fragment Spaces with feature trees.
    Lessel U; Wellenzohn B; Lilienthal M; Claussen H
    J Chem Inf Model; 2009 Feb; 49(2):270-9. PubMed ID: 19434829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating virtual screening and combinatorial chemistry for accelerated drug discovery.
    López-Vallejo F; Caulfield T; Martínez-Mayorga K; Giulianotti MA; Nefzi A; Houghten RA; Medina-Franco JL
    Comb Chem High Throughput Screen; 2011 Jul; 14(6):475-87. PubMed ID: 21521151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational principles of compound selection for combinatorial library design.
    Tropsha A; Zheng W
    Comb Chem High Throughput Screen; 2002 Mar; 5(2):111-23. PubMed ID: 11966420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization.
    Hartenfeller M; Proschak E; Schüller A; Schneider G
    Chem Biol Drug Des; 2008 Jul; 72(1):16-26. PubMed ID: 18564216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A graph-based approach to construct target-focused libraries for virtual screening.
    Naderi M; Alvin C; Ding Y; Mukhopadhyay S; Brylinski M
    J Cheminform; 2016; 8():14. PubMed ID: 26981157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient exploration of large combinatorial chemistry spaces by monomer-based similarity searching.
    Yu N; Bakken GA
    J Chem Inf Model; 2009 Apr; 49(4):745-55. PubMed ID: 19309177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.