BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11410288)

  • 1. Use of silicate sol-gels to trap the R and T quaternary conformational states of pig kidney fructose-1,6-bisphosphatase.
    McIninch JK; Kantrowitz ER
    Biochim Biophys Acta; 2001 Jun; 1547(2):320-8. PubMed ID: 11410288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMP inhibition of pig kidney fructose-1,6-bisphosphatase.
    Kelley-Loughnane N; Kantrowitz ER
    Biochim Biophys Acta; 2001 Jul; 1548(1):66-71. PubMed ID: 11451439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of AMP to two of the four subunits of pig kidney fructose-1,6-bisphosphatase induces the allosteric transition.
    Kelley-Loughnane N; Kantrowitz ER
    Proteins; 2001 Aug; 44(3):255-61. PubMed ID: 11455598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for an active T-state pig kidney fructose 1,6-bisphosphatase: interface residue Lys-42 is important for allosteric inhibition and AMP cooperativity.
    Lu G; Stec B; Giroux EL; Kantrowitz ER
    Protein Sci; 1996 Nov; 5(11):2333-42. PubMed ID: 8931152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification, kinetic studies, and homology model of Escherichia coli fructose-1,6-bisphosphatase.
    Kelley-Loughnane N; Biolsi SA; Gibson KM; Lu G; Hehir MJ; Phelan P; Kantrowitz ER
    Biochim Biophys Acta; 2002 Jan; 1594(1):6-16. PubMed ID: 11825604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fructose-1,6-bisphosphatase: arginine-22 is involved in stabilization of the T allosteric state.
    Lu G; Williams MK; Giroux EL; Kantrowitz ER
    Biochemistry; 1995 Oct; 34(41):13272-7. PubMed ID: 7577911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a mechanism for the allosteric transition of pig kidney fructose-1,6-bisphosphatase.
    Zhang Y; Liang JY; Huang S; Lipscomb WN
    J Mol Biol; 1994 Dec; 244(5):609-24. PubMed ID: 7990142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures of mammalian and bacterial fructose-1,6-bisphosphatase reveal the basis for synergism in AMP/fructose 2,6-bisphosphate inhibition.
    Hines JK; Chen X; Nix JC; Fromm HJ; Honzatko RB
    J Biol Chem; 2007 Dec; 282(49):36121-31. PubMed ID: 17933867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of the active site mutant (Arg-243-->Ala) in the T and R allosteric states of pig kidney fructose-1,6-bisphosphatase expressed in Escherichia coli.
    Stec B; Abraham R; Giroux E; Kantrowitz ER
    Protein Sci; 1996 Aug; 5(8):1541-53. PubMed ID: 8844845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The C1-C2 interface residue lysine 50 of pig kidney fructose-1, 6-bisphosphatase has a crucial role in the cooperative signal transmission of the AMP inhibition.
    Cárcamo JG; Yañez AJ; Ludwig HC; León O; Pinto RO; Reyes AM; Slebe JC
    Eur J Biochem; 2000 Apr; 267(8):2242-51. PubMed ID: 10759847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational transition of fructose-1,6-bisphosphatase: structure comparison between the AMP complex (T form) and the fructose 6-phosphate complex (R form).
    Ke HM; Liang JY; Zhang YP; Lipscomb WN
    Biochemistry; 1991 May; 30(18):4412-20. PubMed ID: 1850623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. R-state AMP complex reveals initial steps of the quaternary transition of fructose-1,6-bisphosphatase.
    Iancu CV; Mukund S; Fromm HJ; Honzatko RB
    J Biol Chem; 2005 May; 280(20):19737-45. PubMed ID: 15767255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of inhibited fructose-1,6-bisphosphatase from Escherichia coli: distinct allosteric inhibition sites for AMP and glucose 6-phosphate and the characterization of a gluconeogenic switch.
    Hines JK; Kruesel CE; Fromm HJ; Honzatko RB
    J Biol Chem; 2007 Aug; 282(34):24697-706. PubMed ID: 17567577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of subunit interface residues of fructose-1,6-bisphosphatase by site-directed mutagenesis: effects on AMP and Mg2+ affinities.
    Shyur LF; Aleshin AE; Fromm HJ
    Biochemistry; 1996 Jun; 35(23):7492-8. PubMed ID: 8652527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of fructose-1,6-bisphosphatase by a new class of allosteric effectors.
    Choe JY; Nelson SW; Arienti KL; Axe FU; Collins TL; Jones TK; Kimmich RD; Newman MJ; Norvell K; Ripka WC; Romano SJ; Short KM; Slee DH; Fromm HJ; Honzatko RB
    J Biol Chem; 2003 Dec; 278(51):51176-83. PubMed ID: 14530289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational and allosteric changes in fructose 1,6-bisphosphatase upon photoaffinity labeling with 2-azidoadenosine monophosphate.
    Riquelme PT; Czarnecki JJ
    J Biol Chem; 1983 Jul; 258(13):8240-5. PubMed ID: 6305979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Des-1-25-fructose-1,6-bisphosphatase, a nonallosteric derivative produced by trypsin treatment of the native protein.
    Chatterjee T; Reardon I; Heinrikson RL; Marcus F
    J Biol Chem; 1985 Nov; 260(25):13553-9. PubMed ID: 2997170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The allosteric site of human liver fructose-1,6-bisphosphatase. Analysis of six AMP site mutants based on the crystal structure.
    Gidh-Jain M; Zhang Y; van Poelje PD; Liang JY; Huang S; Kim J; Elliott JT; Erion MD; Pilkis SJ; Raafat el-Maghrabi M
    J Biol Chem; 1994 Nov; 269(44):27732-8. PubMed ID: 7961695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Recent advance in the discovery of allosteric inhibitors binding to the AMP site of fructose-1,6-bisphosphatase].
    Li ZM; Bie JB; Song HR; Xu BL
    Yao Xue Xue Bao; 2011 Nov; 46(11):1291-300. PubMed ID: 22260018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of spinach chloroplast fructose-1,6-bisphosphatase at 2.8 A resolution.
    Villeret V; Huang S; Zhang Y; Xue Y; Lipscomb WN
    Biochemistry; 1995 Apr; 34(13):4299-306. PubMed ID: 7703243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.