BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11410476)

  • 1. Coding and noncoding plastid DNA in palm systematics.
    Asmussen CB; Chase MW
    Am J Bot; 2001 Jun; 88(6):1103-17. PubMed ID: 11410476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A phylogenetic analysis of the Arecoid Line of palms based on plastid DNA sequence data.
    Hahn WJ
    Mol Phylogenet Evol; 2002 May; 23(2):189-204. PubMed ID: 12069550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions.
    Barfuss MH; Samuel R; Till W; Stuessy TF
    Am J Bot; 2005 Feb; 92(2):337-51. PubMed ID: 21652410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phylogenetic hypothesis for the Aizoaceae (Caryophyllales) based on four plastid DNA regions.
    Klak C; Khunou A; Reeves G; Hedderson T
    Am J Bot; 2003 Oct; 90(10):1433-45. PubMed ID: 21659095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic utility of the nuclear gene malate synthase in the palm family (Arecaceae).
    Lewis CE; Doyle JJ
    Mol Phylogenet Evol; 2001 Jun; 19(3):409-20. PubMed ID: 11399149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mid-Tertiary dispersal, not Gondwanan vicariance explains distribution patterns in the wax palm subfamily (Ceroxyloideae: Arecaceae).
    Trénel P; Gustafsson MH; Baker WJ; Asmussen-Lange CB; Dransfield J; Borchsenius F
    Mol Phylogenet Evol; 2007 Oct; 45(1):272-88. PubMed ID: 17482839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular phylogenetics of subfamily Calamoideae (Palmae) based on nrDNA ITS and cpDNA rps16 intron sequence data.
    Baker WJ; Hedderson TA; Dransfield J
    Mol Phylogenet Evol; 2000 Feb; 14(2):195-217. PubMed ID: 10679155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematics of Amaryllidaceae based on cladistic analysis of plastid sequence data.
    Meerow AW; Fay MF; Guy CL; Li QB; Zaman FQ; Chase MW
    Am J Bot; 1999 Sep; 86(9):1325-45. PubMed ID: 10487820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The major clades of Loasaceae: phylogenetic analysis using the plastid matK and trnL-trnF regions.
    Hufford L; McMahon MM; Sherwood AM; Reeves G; Chase MW
    Am J Bot; 2003 Aug; 90(8):1215-28. PubMed ID: 21659222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic relationships of aroids and duckweeds (Araceae) inferred from coding and noncoding plastid DNA.
    Cabrera LI; Salazar GA; Chase MW; Mayo SJ; Bogner J; Dávila P
    Am J Bot; 2008 Sep; 95(9):1153-65. PubMed ID: 21632433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular systematics of Iridaceae: evidence from four plastid DNA regions.
    Reeves G; Chase MW; Goldblatt P; Rudall P; Fay MF; Cox AV; Lejeune B; Souza-Chies T
    Am J Bot; 2001 Nov; 88(11):2074-87. PubMed ID: 21669639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic relationships of the Aurantioideae inferred from chloroplast DNA sequence data.
    Morton CM; Grant M; Blackmore S
    Am J Bot; 2003 Oct; 90(10):1463-9. PubMed ID: 21659098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A phylogenetic analysis of Rhamnaceae using rbcL and trnL-F plastid DNA sequences.
    Richardson JE; Fay MF; Cronk QC; Bowman D; Chase MW
    Am J Bot; 2000 Sep; 87(9):1309-24. PubMed ID: 10991902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular systematics of Malpighiaceae: evidence from plastid rbcL and matK sequences.
    Cameron KM; Chase MW; Anderson WR; Hills HG
    Am J Bot; 2001 Oct; 88(10):1847-62. PubMed ID: 21669618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic relationships among Acanthaceae: evidence from noncoding trnL-trnF chloroplast DNA sequences.
    McDade LA; Moody ML
    Am J Bot; 1999 Jan; 86(1):70-80. PubMed ID: 21680347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal protein-coding gene: further evidence from a nuclear gene of the systematic chaos in the family.
    He S; Mayden RL; Wang X; Wang W; Tang KL; Chen WJ; Chen Y
    Mol Phylogenet Evol; 2008 Mar; 46(3):818-29. PubMed ID: 18203625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular evolution of the trnTUGU-trnFGAA region in Bryophytes.
    Quandt D; Stech M
    Plant Biol (Stuttg); 2004 Sep; 6(5):545-54. PubMed ID: 15375725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular systematics of Apiaceae subfamily Apioideae: phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacer and plastid RPO C1 intron sequences.
    Downie S; Ramanath S; Katz-Downie D; Llanas E
    Am J Bot; 1998 Apr; 85(4):563. PubMed ID: 21684940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region, and trnL intron sequences.
    Kusumi J; Tsumura Y; Yoshimaru H; Tachida H
    Am J Bot; 2000 Oct; 87(10):1480-8. PubMed ID: 11034923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F, and rbcL in basal angiosperms.
    Müller KF; Borsch T; Hilu KW
    Mol Phylogenet Evol; 2006 Oct; 41(1):99-117. PubMed ID: 16904914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.